Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 5, Pages 120–146 (Mi smj1495)  

This article is cited in 26 scientific papers (total in 26 papers)

Existence and uniqueness of stationary solutions for a viscous compressible heat-conducting fluid with large potential and small nonpotential external forces

A. Novotny, M. Padula
Abstract: Existence and uniqueness of stationary solutions to the equations of viscous compressible heat-conductive fluid in bounded domains are well known provided the external forces and the boundary data are “sufficiently small in appropriate norms.” We show that existence and uniqueness hold also for large potential forces with “small” nonpotential perturbations. We consider the Dirichlet boundary conditions on the velocity under which there is neither outflow nor inflow.
Received: 12.08.1992
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 5, Pages 898–922
DOI: https://doi.org/10.1007/BF00971405
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: A. Novotny, M. Padula, “Existence and uniqueness of stationary solutions for a viscous compressible heat-conducting fluid with large potential and small nonpotential external forces”, Sibirsk. Mat. Zh., 34:5 (1993), 120–146; Siberian Math. J., 34:5 (1993), 898–922
Citation in format AMSBIB
\Bibitem{NovPad93}
\by A.~Novotny, M.~Padula
\paper Existence and uniqueness of stationary solutions for a viscous compressible heat-conducting fluid with large potential and small nonpotential external forces
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 5
\pages 120--146
\mathnet{http://mi.mathnet.ru/smj1495}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1255466}
\zmath{https://zbmath.org/?q=an:0808.76083}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 5
\pages 898--922
\crossref{https://doi.org/10.1007/BF00971405}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MG83400011}
Linking options:
  • https://www.mathnet.ru/eng/smj1495
  • https://www.mathnet.ru/eng/smj/v34/i5/p120
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:753
    Full-text PDF :146
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024