Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 5, Pages 103–119 (Mi smj1494)  

This article is cited in 5 scientific papers (total in 5 papers)

Horofunctions, Busemann functions, and ideal boundaries of open manifolds of nonnegative curvature

V. B. Marenich
Abstract: Ideal boundaries of open manifolds with nonnegative sectional curvature are considered. Unlike the case of nonpositive curvature, such known definitions of ideal boundary as the space of horofunctions, the space of Busemann functions, and the class of equivalent rays can lead to nonhomeomorphic spaces. A corresponding example is given. Moreover, we study rays that are gradient lines of horofunctions and prove inequalities which connect horofunctions with Busemann functions. We introduce a metric (the angle at infinity) in the space and find sufficient conditions for a Busemann function to be exhausting. We also introduce the $dl$-functions that are generalization of horofunctions and prove topological triviality of the corresponding ideal boundary.
Received: 02.04.1992
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 5, Pages 883–897
DOI: https://doi.org/10.1007/BF00971404
Bibliographic databases:
UDC: 514.772
Language: Russian
Citation: V. B. Marenich, “Horofunctions, Busemann functions, and ideal boundaries of open manifolds of nonnegative curvature”, Sibirsk. Mat. Zh., 34:5 (1993), 103–119; Siberian Math. J., 34:5 (1993), 883–897
Citation in format AMSBIB
\Bibitem{Mar93}
\by V.~B.~Marenich
\paper Horofunctions, Busemann functions, and ideal boundaries of open manifolds of nonnegative curvature
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 5
\pages 103--119
\mathnet{http://mi.mathnet.ru/smj1494}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1255465}
\zmath{https://zbmath.org/?q=an:0820.53044}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 5
\pages 883--897
\crossref{https://doi.org/10.1007/BF00971404}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MG83400010}
Linking options:
  • https://www.mathnet.ru/eng/smj1494
  • https://www.mathnet.ru/eng/smj/v34/i5/p103
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :121
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024