Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2001, Volume 42, Number 3, Pages 585–609 (Mi smj1446)  

This article is cited in 7 scientific papers (total in 7 papers)

Nonlinear integroparabolic equations on unbounded domains: existence of classical solutions with special properties

M. M. Lavrent'ev (Jn.)a, R. Spiglerb, D. R. Akhmetova

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Università degli Studi Roma Tre, Dipartimento di Matematica Largo San Leonardo Murialdo, 1, 00146 Roma (Italia)
Full-text PDF (333 kB) Citations (7)
Abstract: Classical solvability is established for a certain nonlinear integrodifferential parabolic equation, on unbounded domains in several dimensions. The model equation of the Fokker–Planck type represents a regularized version of an equation recently derived by J. A. Acebron and R. Spigler for the physical problem of describing the time evolution of large populations of nonlinearly globally coupled random oscillators. Precise estimates are obtained for the decay of convolutions with fundamental solutions of linear parabolic equations on unbounded domains in $R^n$. Existence of a classical solution with special properties is established.
Received: 18.10.2000
English version:
Siberian Mathematical Journal, 2001, Volume 42, Issue 3, Pages 495–516
DOI: https://doi.org/10.1023/A:1010423209940
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: M. M. Lavrent'ev (Jn.), R. Spigler, D. R. Akhmetov, “Nonlinear integroparabolic equations on unbounded domains: existence of classical solutions with special properties”, Sibirsk. Mat. Zh., 42:3 (2001), 585–609; Siberian Math. J., 42:3 (2001), 495–516
Citation in format AMSBIB
\Bibitem{LavSpiAkh01}
\by M.~M.~Lavrent'ev (Jn.), R.~Spigler, D.~R.~Akhmetov
\paper Nonlinear integroparabolic equations on unbounded domains: existence of classical solutions with special properties
\jour Sibirsk. Mat. Zh.
\yr 2001
\vol 42
\issue 3
\pages 585--609
\mathnet{http://mi.mathnet.ru/smj1446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1852238}
\zmath{https://zbmath.org/?q=an:0977.35065}
\elib{https://elibrary.ru/item.asp?id=804112}
\transl
\jour Siberian Math. J.
\yr 2001
\vol 42
\issue 3
\pages 495--516
\crossref{https://doi.org/10.1023/A:1010423209940}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169277100009}
Linking options:
  • https://www.mathnet.ru/eng/smj1446
  • https://www.mathnet.ru/eng/smj/v42/i3/p585
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024