Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2001, Volume 42, Number 3, Pages 491–506 (Mi smj1438)  

This article is cited in 3 scientific papers (total in 3 papers)

On maximal chains in the lattice of module topologies

V. I. Arnautov, K. M. Filippov

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Full-text PDF (276 kB) Citations (3)
Abstract: Let $(R,\tau_R)$ be a topological ring and ${}_RM$, a left unitary $R$-module. The set $L(M)$ of all $(R,\tau_R)$-module topologies on ${}_RM$ is a complete modular lattice. A topology $\tau\in L(M)$ is $n$-premaximal if in $L(M)$ there exists an inclusion-maximal chain $\tau_>\tau_1>\dots>\tau_n$ such that $\tau_0$ is the largest element in $L(M)$ and $\tau_n=\tau$. Section 1 contains conditions for existence of 1-premaximal Hausdorff topologies on ${}_RM$. Section 2 contains a description of all $n$-premaximal topologies in the case when $(R,\tau_R)$ is a topological skew field whose topology is determined by a real absolute value.
Received: 13.05.1998
English version:
Siberian Mathematical Journal, 2001, Volume 42, Issue 3, Pages 415–427
DOI: https://doi.org/10.1023/A:1010469606306
Bibliographic databases:
UDC: 512.556.5
Language: Russian
Citation: V. I. Arnautov, K. M. Filippov, “On maximal chains in the lattice of module topologies”, Sibirsk. Mat. Zh., 42:3 (2001), 491–506; Siberian Math. J., 42:3 (2001), 415–427
Citation in format AMSBIB
\Bibitem{ArnFil01}
\by V.~I.~Arnautov, K.~M.~Filippov
\paper On maximal chains in the lattice of module topologies
\jour Sibirsk. Mat. Zh.
\yr 2001
\vol 42
\issue 3
\pages 491--506
\mathnet{http://mi.mathnet.ru/smj1438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1852230}
\zmath{https://zbmath.org/?q=an:1020.16033}
\transl
\jour Siberian Math. J.
\yr 2001
\vol 42
\issue 3
\pages 415--427
\crossref{https://doi.org/10.1023/A:1010469606306}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169277100001}
Linking options:
  • https://www.mathnet.ru/eng/smj1438
  • https://www.mathnet.ru/eng/smj/v42/i3/p491
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024