Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2001, Volume 42, Number 4, Pages 888–891 (Mi smj1431)  

This article is cited in 6 scientific papers (total in 6 papers)

On a group that acts freely on an Abelian group

V. D. Mazurov, V. A. Churkin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (150 kB) Citations (6)
Abstract: A subgroup of $SL_2(C)$ is proven finite whenever it is generated by two elements $x$ and $y$ of order 3 such that the orders of $xy$ and $xy^{-1}$ are finite. It follows that a group acting freely on a nontrivial abelian group is finite whenever it is generated by two elements $x$ and $y$ of order 3 such that the orders of $xy$ and $xy^{-1}$ are finite.
Received: 14.02.2001
English version:
Siberian Mathematical Journal, 2001, Volume 42, Issue 4, Pages 748–750
DOI: https://doi.org/10.1023/A:1010401732542
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: V. D. Mazurov, V. A. Churkin, “On a group that acts freely on an Abelian group”, Sibirsk. Mat. Zh., 42:4 (2001), 888–891; Siberian Math. J., 42:4 (2001), 748–750
Citation in format AMSBIB
\Bibitem{MazChu01}
\by V.~D.~Mazurov, V.~A.~Churkin
\paper On a~group that acts freely on an Abelian group
\jour Sibirsk. Mat. Zh.
\yr 2001
\vol 42
\issue 4
\pages 888--891
\mathnet{http://mi.mathnet.ru/smj1431}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1865477}
\zmath{https://zbmath.org/?q=an:1016.20022}
\transl
\jour Siberian Math. J.
\yr 2001
\vol 42
\issue 4
\pages 748--750
\crossref{https://doi.org/10.1023/A:1010401732542}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170501200010}
Linking options:
  • https://www.mathnet.ru/eng/smj1431
  • https://www.mathnet.ru/eng/smj/v42/i4/p888
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024