Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2001, Volume 42, Number 4, Pages 825–848 (Mi smj1428)  

This article is cited in 8 scientific papers (total in 8 papers)

Regularizing a nonlinear integroparabolic Fokker–Planck equation with space-periodic solutions: existence of strong solutions

M. M. Lavrent'ev (Jn.)a, R. Spiglerb, D. R. Akhmetova

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Università degli Studi Roma Tre
Full-text PDF (330 kB) Citations (8)
Abstract: A nonlinear Fokker–Planck-type parabolic integrodifferential equation is studied. It arises from statistical description for the dynamical behavior of populations of infinitely many nonlinearly coupled random oscillators subject to“ean-field” interaction (the space-integral term in the equation accounts for this). Such a model generalizes and improves the celebrated Kuramoto model which describes a variety of phenomena, in particular self-synchronization, in fields ranging from biology and medicine to physics and neural networks. Space-degenerate diffusion suggests to consider a regularized equation, where a small spatial diffusion is incorporated in the model equation. The peculiarities of the problem include (besides degeneracy) unbounded coefficients, space-periodicity of the sought solution, and a nonlinear space-integral term. Estimates, uniform in regularization parameters, allow the taking of a limit which identifies a solution to the original problem in certain Sobolev and Holder spaces. Existence of strong solutions is thus established. Precise decay estimates for convolutions of continuous functions with fundamental solutions to linear parabolic equations on unbounded domains (obtained by the authors earlier) are used intensively as an essential tool for general linear parabolic equations in $R_n$.
Received: 22.12.2000
English version:
Siberian Mathematical Journal, 2001, Volume 42, Issue 4, Pages 693–714
DOI: https://doi.org/10.1023/A:1010445414795
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: M. M. Lavrent'ev (Jn.), R. Spigler, D. R. Akhmetov, “Regularizing a nonlinear integroparabolic Fokker–Planck equation with space-periodic solutions: existence of strong solutions”, Sibirsk. Mat. Zh., 42:4 (2001), 825–848; Siberian Math. J., 42:4 (2001), 693–714
Citation in format AMSBIB
\Bibitem{LavSpiAkh01}
\by M.~M.~Lavrent'ev (Jn.), R.~Spigler, D.~R.~Akhmetov
\paper Regularizing a~nonlinear integroparabolic Fokker--Planck equation with space-periodic solutions: existence of strong solutions
\jour Sibirsk. Mat. Zh.
\yr 2001
\vol 42
\issue 4
\pages 825--848
\mathnet{http://mi.mathnet.ru/smj1428}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1865474}
\zmath{https://zbmath.org/?q=an:0983.35075}
\elib{https://elibrary.ru/item.asp?id=5030099}
\transl
\jour Siberian Math. J.
\yr 2001
\vol 42
\issue 4
\pages 693--714
\crossref{https://doi.org/10.1023/A:1010445414795}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170501200007}
Linking options:
  • https://www.mathnet.ru/eng/smj1428
  • https://www.mathnet.ru/eng/smj/v42/i4/p825
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024