Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2001, Volume 42, Number 5, Pages 1125–1135 (Mi smj1410)  

This article is cited in 4 scientific papers (total in 4 papers)

Solving the multidimensional difference biharmonic equation by the Monte Carlo method

G. A. Mikhailov, V. L. Lukinov

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
Full-text PDF (209 kB) Citations (4)
Abstract: We construct and justify new weighted Monte Carlo methods for estimation of a solution to the Dirichlet problem for the multidimensional difference biharmonic equation by modeling a “random walk by a grid”. Vector versions of our algorithms extend to the difference metaharmonic equations, with the shape of unbiasedness conditions of estimators preserved together with boundedness of their variances. In this connection, we construct a simple algorithm for estimation of the first eigenvalue of the multidimensional difference Laplace operator. Moreover, we construct special algorithms of a “random walk by a grid” which under certain conditions allow us to estimate solutions of the Dirichlet problem for the biharmonic equation with a weak nonlinearity as well as solutions to problems with mixed boundary conditions, the Neumann condition inclusively.
Received: 30.03.2001
English version:
Siberian Mathematical Journal, 2001, Volume 42, Issue 5, Pages 942–951
DOI: https://doi.org/10.1023/A:1011971812294
Bibliographic databases:
UDC: 518:517.948
Language: Russian
Citation: G. A. Mikhailov, V. L. Lukinov, “Solving the multidimensional difference biharmonic equation by the Monte Carlo method”, Sibirsk. Mat. Zh., 42:5 (2001), 1125–1135; Siberian Math. J., 42:5 (2001), 942–951
Citation in format AMSBIB
\Bibitem{MikLuk01}
\by G.~A.~Mikhailov, V.~L.~Lukinov
\paper Solving the multidimensional difference biharmonic equation by the Monte Carlo method
\jour Sibirsk. Mat. Zh.
\yr 2001
\vol 42
\issue 5
\pages 1125--1135
\mathnet{http://mi.mathnet.ru/smj1410}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1861639}
\zmath{https://zbmath.org/?q=an:0993.65006}
\transl
\jour Siberian Math. J.
\yr 2001
\vol 42
\issue 5
\pages 942--951
\crossref{https://doi.org/10.1023/A:1011971812294}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172156900013}
Linking options:
  • https://www.mathnet.ru/eng/smj1410
  • https://www.mathnet.ru/eng/smj/v42/i5/p1125
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :112
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024