Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2001, Volume 42, Number 6, Pages 1215–1230 (Mi smj1382)  

This article is cited in 4 scientific papers (total in 4 papers)

Deformation of plates of small condensers and Belinskii's problem

V. V. Aseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (262 kB) Citations (4)
Abstract: We study the homeomorphic embeddings of a compact set $K$, a union of nondegenerate continua, into $\overline{\mathbb R}^n$ which preserve the conformal moduli of all condensers whose plates are continua in $K$. Using a result by V. N. Dubinin together with the estimates for the conformal moduli of infinitesimal condensers, we prove that Belinskii's conjecture (that such a mapping extends to a Mobius automorphism of the whole space $\overline{\mathbb R}^n$, corroborated by the author in 1990 for $n=2$ is also valid for $n>2$ if the compact set in question is regular at some collection of $(n+2)$ points. This essentially strengthens the previous result of the author (1992) in which regularity was required at each point of the compact set.
Received: 23.01.2001
English version:
Siberian Mathematical Journal, 2001, Volume 42, Issue 6, Pages 1013–1025
DOI: https://doi.org/10.1023/A:1012836124090
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: V. V. Aseev, “Deformation of plates of small condensers and Belinskii's problem”, Sibirsk. Mat. Zh., 42:6 (2001), 1215–1230; Siberian Math. J., 42:6 (2001), 1013–1025
Citation in format AMSBIB
\Bibitem{Ase01}
\by V.~V.~Aseev
\paper Deformation of plates of small condensers and Belinskii's problem
\jour Sibirsk. Mat. Zh.
\yr 2001
\vol 42
\issue 6
\pages 1215--1230
\mathnet{http://mi.mathnet.ru/smj1382}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1876811}
\zmath{https://zbmath.org/?q=an:1012.30006}
\transl
\jour Siberian Math. J.
\yr 2001
\vol 42
\issue 6
\pages 1013--1025
\crossref{https://doi.org/10.1023/A:1012836124090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172981200001}
Linking options:
  • https://www.mathnet.ru/eng/smj1382
  • https://www.mathnet.ru/eng/smj/v42/i6/p1215
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024