Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2002, Volume 43, Number 6, Pages 1430–1442 (Mi smj1381)  

This article is cited in 18 scientific papers (total in 18 papers)

An integral geometry problem in a nonconvex domain

V. A. Sharafutdinov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: We consider the problem of recovering the solenoidal part of a symmetric tensor field $f$ on a compact Riemannian manifold $(M,g)$ with boundary from the integrals of $f$ over all geodesics joining boundary points. All previous results on the problem are obtained under the assumption that the boundary $\partial M$ is convex. This assumption is related to the fact that the family of maximal geodesics has the structure of a smooth manifold if $\partial M$ is convex and there is no geodesic of infinite length in $\partial M$. This implies that the ray transform of a smooth field is a smooth function and so we may use analytic techniques. Instead of convexity of $\partial M$ we assume that $\partial M$ is a smooth domain in a larger Riemannian manifold with convex boundary and the problem under consideration admits a stability estimate. We then prove uniqueness of a solution to the problem for $\partial M$.
Keywords: ntegral geometry, ray transform, tensor field.
Received: 09.09.2002
English version:
Siberian Mathematical Journal, 2002, Volume 43, Issue 6, Pages 1159–1168
DOI: https://doi.org/10.1023/A:1021189922555
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: V. A. Sharafutdinov, “An integral geometry problem in a nonconvex domain”, Sibirsk. Mat. Zh., 43:6 (2002), 1430–1442; Siberian Math. J., 43:6 (2002), 1159–1168
Citation in format AMSBIB
\Bibitem{Sha02}
\by V.~A.~Sharafutdinov
\paper An integral geometry problem in a~nonconvex domain
\jour Sibirsk. Mat. Zh.
\yr 2002
\vol 43
\issue 6
\pages 1430--1442
\mathnet{http://mi.mathnet.ru/smj1381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1946241}
\zmath{https://zbmath.org/?q=an:1025.53044}
\transl
\jour Siberian Math. J.
\yr 2002
\vol 43
\issue 6
\pages 1159--1168
\crossref{https://doi.org/10.1023/A:1021189922555}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180105300018}
Linking options:
  • https://www.mathnet.ru/eng/smj1381
  • https://www.mathnet.ru/eng/smj/v43/i6/p1430
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :107
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024