Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2002, Volume 43, Number 5, Pages 987–1001 (Mi smj1363)  

This article is cited in 8 scientific papers (total in 8 papers)

The kinetic transport equation in the case of Compton scattering

D. S. Anikonov, D. S. Konovalova

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences
Full-text PDF (229 kB) Citations (8)
Abstract: We improve the well-known form of the transport equation accounting for Compton scattering. We pose and study the direct problem of finding the radiation density distribution for given characteristics of a medium and known density of exterior sources. We prove existence and uniqueness theorems for a solution to the boundary value problem under consideration. The character of constraints corresponds mostly to the process of photon migration in a substance whose characteristics vary continuously with the space and energy variables. Unlike similar results, the assertions are proven without using the traditional inequalities for the coefficients of the transport equation.
Keywords: Compton scattering, kinetic equation, transport theory, photon migration.
Received: 19.06.2001
Revised: 11.01.2002
English version:
Siberian Mathematical Journal, 2002, Volume 43, Issue 5, Pages 795–807
DOI: https://doi.org/10.1023/A:1020190303993
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: D. S. Anikonov, D. S. Konovalova, “The kinetic transport equation in the case of Compton scattering”, Sibirsk. Mat. Zh., 43:5 (2002), 987–1001; Siberian Math. J., 43:5 (2002), 795–807
Citation in format AMSBIB
\Bibitem{AniKon02}
\by D.~S.~Anikonov, D.~S.~Konovalova
\paper The kinetic transport equation in the case of Compton scattering
\jour Sibirsk. Mat. Zh.
\yr 2002
\vol 43
\issue 5
\pages 987--1001
\mathnet{http://mi.mathnet.ru/smj1363}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1946258}
\zmath{https://zbmath.org/?q=an:1052.82026}
\transl
\jour Siberian Math. J.
\yr 2002
\vol 43
\issue 5
\pages 795--807
\crossref{https://doi.org/10.1023/A:1020190303993}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178696400002}
Linking options:
  • https://www.mathnet.ru/eng/smj1363
  • https://www.mathnet.ru/eng/smj/v43/i5/p987
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:457
    Full-text PDF :159
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024