Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2002, Volume 43, Number 4, Pages 840–857 (Mi smj1334)  

This article is cited in 5 scientific papers (total in 5 papers)

Asymptotic stability of a stationary flowing regime of an ideal incompressible fluid

A. B. Morgulis, V. I. Yudovich

Rostov State University
Full-text PDF (293 kB) Citations (5)
Abstract: We give sufficient conditions for asymptotic stability of a stationary solution to a flowing problem of a homogeneous incompressible fluid through a given planar domain. We consider a planar problem for the Euler equation and boundary conditions for the curl and the normal component of the velocity; moreover, the latter is given on the whole boundary of the flow domain and the curl is given only on the inlet part of the boundary. We establish asymptotic stability of a stationary flow (in linear approximation), assuming it to have no rest points and to satisfy some smallness condition which means that the perturbations leave the flow domain before they become to affect the main flow. In particular, we prove asymptotic stability for an arbitrary stationary flow in a rectangular canal close to the Couette flow without rest points. Moreover, we show that stability of the main flow in the $L_2$-norm under curl perturbations implies its stability in higher-order norms depending, for example, on the derivatives of the curl.
Keywords: incompressible fluid, Euler equation, stability, asymptotic stability.
Received: 14.06.2001
English version:
Siberian Mathematical Journal, 2002, Volume 43, Issue 4, Pages 674–688
DOI: https://doi.org/10.1023/A:1016376319707
Bibliographic databases:
UDC: 517.958:532.501.34
Language: Russian
Citation: A. B. Morgulis, V. I. Yudovich, “Asymptotic stability of a stationary flowing regime of an ideal incompressible fluid”, Sibirsk. Mat. Zh., 43:4 (2002), 840–857; Siberian Math. J., 43:4 (2002), 674–688
Citation in format AMSBIB
\Bibitem{MorYud02}
\by A.~B.~Morgulis, V.~I.~Yudovich
\paper Asymptotic stability of a~stationary flowing regime of an ideal incompressible fluid
\jour Sibirsk. Mat. Zh.
\yr 2002
\vol 43
\issue 4
\pages 840--857
\mathnet{http://mi.mathnet.ru/smj1334}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1934584}
\zmath{https://zbmath.org/?q=an:1032.76008}
\transl
\jour Siberian Math. J.
\yr 2002
\vol 43
\issue 4
\pages 674--688
\crossref{https://doi.org/10.1023/A:1016376319707}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000177460300009}
Linking options:
  • https://www.mathnet.ru/eng/smj1334
  • https://www.mathnet.ru/eng/smj/v43/i4/p840
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :150
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024