Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2002, Volume 43, Number 4, Pages 769–778 (Mi smj1328)  

This article is cited in 18 scientific papers (total in 18 papers)

Minimal coverings in the Rogers semilattices of $\Sigma_n^0$-computable numberings

S. A. Badaeva, S. Yu. Podzorovb

a Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: Under study is the problem of existence of minimal and strong minimal coverings in Rogers semilattices of $\Sigma_n^0$-computable numberings for $n\ge 2$. Two sufficient conditions for existence of minimal coverings and one sufficient condition for existence of strong minimal coverings are found. The problem is completely solved of existence of minimal coverings in Rogers semilattices of $\sum_n^0$-computable numberings of a finite family.
Keywords: computability, numbering, Rogers semilattice, minimal covering.
Received: 29.03.2001
English version:
Siberian Mathematical Journal, 2002, Volume 43, Issue 4, Pages 616–622
DOI: https://doi.org/10.1023/A:1016364016981
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: S. A. Badaev, S. Yu. Podzorov, “Minimal coverings in the Rogers semilattices of $\Sigma_n^0$-computable numberings”, Sibirsk. Mat. Zh., 43:4 (2002), 769–778; Siberian Math. J., 43:4 (2002), 616–622
Citation in format AMSBIB
\Bibitem{BadPod02}
\by S.~A.~Badaev, S.~Yu.~Podzorov
\paper Minimal coverings in the Rogers semilattices of $\Sigma_n^0$-computable numberings
\jour Sibirsk. Mat. Zh.
\yr 2002
\vol 43
\issue 4
\pages 769--778
\mathnet{http://mi.mathnet.ru/smj1328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1934578}
\zmath{https://zbmath.org/?q=an:1008.03026}
\transl
\jour Siberian Math. J.
\yr 2002
\vol 43
\issue 4
\pages 616--622
\crossref{https://doi.org/10.1023/A:1016364016981}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000177460300003}
Linking options:
  • https://www.mathnet.ru/eng/smj1328
  • https://www.mathnet.ru/eng/smj/v43/i4/p769
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :141
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024