Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2002, Volume 43, Number 4, Pages 739–756 (Mi smj1326)  

This article is cited in 2 scientific papers (total in 2 papers)

The method of approximative extension of mappings in the theory of extensors

S. M. Ageeva, D. Repovšb

a A. S. Pushkin Brest State University
b University of Ljubljana
Full-text PDF (323 kB) Citations (2)
Abstract: We develop the method of approximative extension of mappings which enables us not only to simplify the proofs of many available theorems in the theory of extensors but also to obtain a series of new results. Combined with Ancel' theory of fiberwise trivial correspondences, this method leads to considerable progress in the characterization of absolute extensors in terms of local contractivity. We prove the following assertions: Suppose that a space $X$ is represented as the union of countably many closed ANE-subspaces $X_i$ and a countably dimensional subspace $D$: 1. If each $X_i$ is a strict deformation neighborhood retract of $X$ and $X\in{\rm LC}$, then $X\in{\rm ANE}$. 2. If $X\in{\rm LEC}$, then $X\in{\rm ANE}$.
Received: 10.11.2000
English version:
Siberian Mathematical Journal, 2002, Volume 43, Issue 4, Pages 591–604
DOI: https://doi.org/10.1023/A:1016332916072
Bibliographic databases:
UDC: 515.126.83
Language: Russian
Citation: S. M. Ageev, D. Repovš, “The method of approximative extension of mappings in the theory of extensors”, Sibirsk. Mat. Zh., 43:4 (2002), 739–756; Siberian Math. J., 43:4 (2002), 591–604
Citation in format AMSBIB
\Bibitem{AgeRep02}
\by S.~M.~Ageev, D.~Repov{\v s}
\paper The method of approximative extension of mappings in the theory of extensors
\jour Sibirsk. Mat. Zh.
\yr 2002
\vol 43
\issue 4
\pages 739--756
\mathnet{http://mi.mathnet.ru/smj1326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1934576}
\transl
\jour Siberian Math. J.
\yr 2002
\vol 43
\issue 4
\pages 591--604
\crossref{https://doi.org/10.1023/A:1016332916072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000177460300001}
Linking options:
  • https://www.mathnet.ru/eng/smj1326
  • https://www.mathnet.ru/eng/smj/v43/i4/p739
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :102
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024