Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2002, Volume 43, Number 3, Pages 702–709 (Mi smj1323)  

A stability estimate for a solution in the inverse problem of finding the coefficients of lower derivatives

V. G. Romanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: We consider the problem of finding the coefficients of the first derivatives in a second-order hyperbolic equation. The additional information is the trace of a solution and its normal derivative on the lateral surface of the cylindrical domain of some direct problem for the original equation. The impulse point source lies outside the domain in which the sought coefficients are determined and is a parameter of the problem. We suppose that the number of sources for which the trace of a solution is given coincides with the number of the coefficients to be determined. The main result of this article is a stability estimate for a solution to the inverse problem under consideration.
Received: 16.01.2002
English version:
Siberian Mathematical Journal, 2002, Volume 43, Issue 3, Pages 568–574
DOI: https://doi.org/10.1023/A:1015480022532
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: V. G. Romanov, “A stability estimate for a solution in the inverse problem of finding the coefficients of lower derivatives”, Sibirsk. Mat. Zh., 43:3 (2002), 702–709; Siberian Math. J., 43:3 (2002), 568–574
Citation in format AMSBIB
\Bibitem{Rom02}
\by V.~G.~Romanov
\paper A~stability estimate for a~solution in the inverse problem of finding the coefficients of lower derivatives
\jour Sibirsk. Mat. Zh.
\yr 2002
\vol 43
\issue 3
\pages 702--709
\mathnet{http://mi.mathnet.ru/smj1323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1916814}
\zmath{https://zbmath.org/?q=an:1007.35100}
\transl
\jour Siberian Math. J.
\yr 2002
\vol 43
\issue 3
\pages 568--574
\crossref{https://doi.org/10.1023/A:1015480022532}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176346500017}
Linking options:
  • https://www.mathnet.ru/eng/smj1323
  • https://www.mathnet.ru/eng/smj/v43/i3/p702
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024