Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2002, Volume 43, Number 3, Pages 493–507 (Mi smj1307)  

This article is cited in 8 scientific papers (total in 8 papers)

Asymptotic stability of solutions to perturbed linear difference equations with periodic coefficients

K. Aidyna, H. Ya. Bulgakova, G. V. Demidenkob

a Selçuk University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (225 kB) Citations (8)
Abstract: We consider perturbed linear systems of difference equations with periodic coefficients. The zero solution of a nonperturbed system is assumed asymptotically stable, i.e. all eigenvalues of the monodromy matrix belong to the unit disk $\{|\lambda|<1\}$. We obtain conditions on the perturbation of this system under which the zero solution of the system is asymptotically stable and also establish continuous dependence of one class of numeric characteristics of asymptotic stability of solutions on the coefficients of the system.
Received: 31.05.2001
English version:
Siberian Mathematical Journal, 2002, Volume 43, Issue 3, Pages 389–401
DOI: https://doi.org/10.1023/A:1015492015263
Bibliographic databases:
UDC: 517.962.22
Language: Russian
Citation: K. Aidyn, H. Ya. Bulgakov, G. V. Demidenko, “Asymptotic stability of solutions to perturbed linear difference equations with periodic coefficients”, Sibirsk. Mat. Zh., 43:3 (2002), 493–507; Siberian Math. J., 43:3 (2002), 389–401
Citation in format AMSBIB
\Bibitem{AidBulDem02}
\by K.~Aidyn, H.~Ya.~Bulgakov, G.~V.~Demidenko
\paper Asymptotic stability of solutions to perturbed linear difference equations with periodic coefficients
\jour Sibirsk. Mat. Zh.
\yr 2002
\vol 43
\issue 3
\pages 493--507
\mathnet{http://mi.mathnet.ru/smj1307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1916798}
\zmath{https://zbmath.org/?q=an:1012.39010}
\transl
\jour Siberian Math. J.
\yr 2002
\vol 43
\issue 3
\pages 389--401
\crossref{https://doi.org/10.1023/A:1015492015263}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176346500001}
Linking options:
  • https://www.mathnet.ru/eng/smj1307
  • https://www.mathnet.ru/eng/smj/v43/i3/p493
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:599
    Full-text PDF :156
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024