Abstract:
We show that an arbitrary finitely approximable logic extending S4.2(Grz.2,KC) preserves all admissible inference rules of the logic S4.2(Grz.2,KC) if and only if this logic possesses the so-called semantic cocovering property.
Citation:
V. V. Rybakov, V. V. Rimatskii, “Preservation of admissibility of inference rules in the logics similar to S4.2”, Sibirsk. Mat. Zh., 43:2 (2002), 446–453; Siberian Math. J., 43:2 (2002), 357–362
\Bibitem{RybRim02}
\by V.~V.~Rybakov, V.~V.~Rimatskii
\paper Preservation of admissibility of inference rules in the logics similar to $S4.2$
\jour Sibirsk. Mat. Zh.
\yr 2002
\vol 43
\issue 2
\pages 446--453
\mathnet{http://mi.mathnet.ru/smj1303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1902832}
\zmath{https://zbmath.org/?q=an:1010.03011}
\transl
\jour Siberian Math. J.
\yr 2002
\vol 43
\issue 2
\pages 357--362
\crossref{https://doi.org/10.1023/A:1014709508359}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000175886400012}
Linking options:
https://www.mathnet.ru/eng/smj1303
https://www.mathnet.ru/eng/smj/v43/i2/p446
This publication is cited in the following 2 articles:
Goudsmit J.P., “Decidability of Admissibility: on a Problem By Friedman and Its Solution By Rybakov”, Bull. Symb. Log., 27:1 (2021), 1–38
Rasga J. Sernadas C. Carnielli W., “Reduction Techniques For Proving Decidability in Logics and Their Meet-Combination”, Bull. Symb. Log., 27:1 (2021), 39–66