Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 6, Pages 1365–1376 (Mi smj1262)  

Stabilizability in asymptotically finite-dimensional semigroups

K. V. Storozhuk

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We study a semigroup $\varphi$ of linear operators on a Banach space $X$ which satisfies the condition $\operatorname{codim}X_0<\infty$, where $X_0=\{x\in X|\varphi_t(x)\xrightarrow[t\to\infty]{}0\}$. We show that $X_0$ is closed and establish some properties of the asymptotic behavior of the subspaces complementing $X_0$ to $X$.
Keywords: semigroup of linear operators, invariant subspace of a semigroup.
Received: 01.11.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 6, Pages 1075–1084
DOI: https://doi.org/10.1023/B:SIMJ.0000007483.94529.ba
Bibliographic databases:
UDC: 517.986.7
Language: Russian
Citation: K. V. Storozhuk, “Stabilizability in asymptotically finite-dimensional semigroups”, Sibirsk. Mat. Zh., 44:6 (2003), 1365–1376; Siberian Math. J., 44:6 (2003), 1075–1084
Citation in format AMSBIB
\Bibitem{Sto03}
\by K.~V.~Storozhuk
\paper Stabilizability in asymptotically finite-dimensional semigroups
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 6
\pages 1365--1376
\mathnet{http://mi.mathnet.ru/smj1262}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2034942}
\zmath{https://zbmath.org/?q=an:1050.47040}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 6
\pages 1075--1084
\crossref{https://doi.org/10.1023/B:SIMJ.0000007483.94529.ba}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187464000015}
Linking options:
  • https://www.mathnet.ru/eng/smj1262
  • https://www.mathnet.ru/eng/smj/v44/i6/p1365
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024