Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 6, Pages 1310–1323 (Mi smj1257)  

This article is cited in 1 scientific paper (total in 1 paper)

Convolution operators on expanding polyhedra: limits of the norms of inverse operators and pseudospectra

E. A. Maksimenko

Rostov State University
Full-text PDF (267 kB) Citations (1)
References:
Abstract: We consider matrix convolution operators with integrable kernels on expanding polyhedra. We study their connection with convolution operators on the cones at the vertices of polyhedra. We prove that the norm of the inverse operator on a polyhedron tends to the maximum of the norms of the inverse operators on the cones, and the pseudospectrum tends to the union of the corresponding pseudospectra. The study bases on the local method adapted to this kind of problems.
Keywords: convolution operator, polyhedron, norm of inverse operator, pseudospectrum.
Received: 14.05.2003
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 6, Pages 1027–1038
DOI: https://doi.org/10.1023/B:SIMJ.0000007478.13348.97
Bibliographic databases:
UDC: 517.983.34
Language: Russian
Citation: E. A. Maksimenko, “Convolution operators on expanding polyhedra: limits of the norms of inverse operators and pseudospectra”, Sibirsk. Mat. Zh., 44:6 (2003), 1310–1323; Siberian Math. J., 44:6 (2003), 1027–1038
Citation in format AMSBIB
\Bibitem{Max03}
\by E.~A.~Maksimenko
\paper Convolution operators on expanding polyhedra: limits of the norms of inverse operators and pseudospectra
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 6
\pages 1310--1323
\mathnet{http://mi.mathnet.ru/smj1257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2034937}
\zmath{https://zbmath.org/?q=an:1071.47013}
\elib{https://elibrary.ru/item.asp?id=13872436}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 6
\pages 1027--1038
\crossref{https://doi.org/10.1023/B:SIMJ.0000007478.13348.97}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187464000010}
Linking options:
  • https://www.mathnet.ru/eng/smj1257
  • https://www.mathnet.ru/eng/smj/v44/i6/p1310
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :86
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024