Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 6, Pages 1295–1309 (Mi smj1256)  

This article is cited in 3 scientific papers (total in 3 papers)

General regularizing functionals for solving ill-posed problems in Lebesgue spaces

A. S. Leonov

Moscow Engineering Physics Institute (State University)
Full-text PDF (242 kB) Citations (3)
References:
Abstract: We study sufficient conditions for general integral functionals in Lebesgue spaces to possess regularizing properties required for solving nonlinear ill-posed problems. We select special classes of such functionals: uniformly convex and quasiuniformly convex (in the extended sense). We give a series of examples and, in particular, a functional that can be used in a generalized version of the maximum entropy method in Lebesgue spaces.
Keywords: regularization, ill-posed problem, Lebesgue space, uniformly (quasiuniformly) convex functional, $H$-property, maximum entropy method.
Received: 19.02.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 6, Pages 1015–1026q
DOI: https://doi.org/10.1023/B:SIMJ.0000007477.31754.b6
Bibliographic databases:
UDC: 514.13
Language: Russian
Citation: A. S. Leonov, “General regularizing functionals for solving ill-posed problems in Lebesgue spaces”, Sibirsk. Mat. Zh., 44:6 (2003), 1295–1309; Siberian Math. J., 44:6 (2003), 1015–1026q
Citation in format AMSBIB
\Bibitem{Leo03}
\by A.~S.~Leonov
\paper General regularizing functionals for solving ill-posed problems in Lebesgue spaces
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 6
\pages 1295--1309
\mathnet{http://mi.mathnet.ru/smj1256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2034936}
\zmath{https://zbmath.org/?q=an:1046.47051}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 6
\pages 1015--1026q
\crossref{https://doi.org/10.1023/B:SIMJ.0000007477.31754.b6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187464000009}
Linking options:
  • https://www.mathnet.ru/eng/smj1256
  • https://www.mathnet.ru/eng/smj/v44/i6/p1295
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :123
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024