Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 6, Pages 1239–1254 (Mi smj1251)  

This article is cited in 12 scientific papers (total in 12 papers)

No associative $PI$-algebra coincides with its commutant

A. Ya. Belovab

a Moscow Institute of Open Education
b International University Bremen
References:
Abstract: We prove that each (possibly not finitely generated) associative $PI$-algebra does not coincide with its commutant. We thus solve I. V. L'vov's problem in the Dniester Notebook. The result follows from the fact (also established in this article) that, in every $T$-prime variety, some weak identity holds and there exists a central polynomial (the existence of a central polynomial was earlier proved by A. R. Kemer). Moreover, we prove stability of $T$-prime varieties (in the case of characteristic zero, this was done by S. V. Okhitin who used A. R. Kemer's classification of $T$-prime varieties).
Keywords: PI-algebra, variety of algebras, identity, stable variety, weak identity, identity with trace, forms, Capelli identity, T-prime variety, Hamilton?Cayley equation, central polynomial.
Received: 12.05.2003
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 6, Pages 969–980
DOI: https://doi.org/10.1023/B:SIMJ.0000007472.85188.56
Bibliographic databases:
UDC: 512.552.4, 512.554.32, 512.664.2
Language: Russian
Citation: A. Ya. Belov, “No associative $PI$-algebra coincides with its commutant”, Sibirsk. Mat. Zh., 44:6 (2003), 1239–1254; Siberian Math. J., 44:6 (2003), 969–980
Citation in format AMSBIB
\Bibitem{Bel03}
\by A.~Ya.~Belov
\paper No associative $PI$-algebra coincides with its commutant
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 6
\pages 1239--1254
\mathnet{http://mi.mathnet.ru/smj1251}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2034931}
\zmath{https://zbmath.org/?q=an:1054.16015}
\elib{https://elibrary.ru/item.asp?id=5219458}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 6
\pages 969--980
\crossref{https://doi.org/10.1023/B:SIMJ.0000007472.85188.56}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187464000004}
Linking options:
  • https://www.mathnet.ru/eng/smj1251
  • https://www.mathnet.ru/eng/smj/v44/i6/p1239
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :131
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024