|
Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 6, Pages 1226–1238
(Mi smj1250)
|
|
|
|
This article is cited in 17 scientific papers (total in 17 papers)
Linear bilipschitz extension property
P. Alestaloa, D. A. Trotsenkob, J. Vyaisyalyac a Helsinki University of Technology
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c University of Helsinki
Abstract:
We give a sufficient geometric condition for a subset $A$ of $\mathbb{R}^n$ to enjoy the following property for a fixed $C\geqslant1$ There is $\delta>0$ such that for $0\leqslant\varepsilon\leqslant\delta$, each $(1+\varepsilon)$-bilipschitz map $f\colon A\to\mathbb{R}^n$ extends to a $(1+C\varepsilon)$-bilipschitz map $F\colon\mathbb{R}^n\to\mathbb{R}^n$.
Keywords:
bilipschitz mapping, quasi-isometry, approximation, extension of mappings, subsets of euclidean space.
Received: 27.06.2003
Citation:
P. Alestalo, D. A. Trotsenko, J. Vyaisyalya, “Linear bilipschitz extension property”, Sibirsk. Mat. Zh., 44:6 (2003), 1226–1238; Siberian Math. J., 44:6 (2003), 959–968
Linking options:
https://www.mathnet.ru/eng/smj1250 https://www.mathnet.ru/eng/smj/v44/i6/p1226
|
Statistics & downloads: |
Abstract page: | 294 | Full-text PDF : | 101 | References: | 47 |
|