Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 5, Pages 1163–1182 (Mi smj1240)  

This article is cited in 5 scientific papers (total in 5 papers)

Error estimation and optimization of the functional algorithms of a random walk on a grid which are applied to solving the Dirichlet problem for the Helmholtz equation

E. V. Shkarupa

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
Full-text PDF (286 kB) Citations (5)
References:
Abstract: We consider the algorithms of a “random walk on a grid” which are applied to global solution of the Dirichlet problem for the Helmholtz equation (the direct and conjugate methods). In the metric space $\mathbf{C}$ we construct some upper error bounds and obtain optimal values (in the sense of the error bound) of the parameters of the algorithms (the number of nodes and the sample size).
Keywords: Monte Carlo method, random walk, Helmholtz equation, functional algorithm, error bound, optimization.
Received: 15.10.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 5, Pages 908–925
DOI: https://doi.org/10.1023/A:1025957324404
Bibliographic databases:
UDC: 519.245
Language: Russian
Citation: E. V. Shkarupa, “Error estimation and optimization of the functional algorithms of a random walk on a grid which are applied to solving the Dirichlet problem for the Helmholtz equation”, Sibirsk. Mat. Zh., 44:5 (2003), 1163–1182; Siberian Math. J., 44:5 (2003), 908–925
Citation in format AMSBIB
\Bibitem{Shk03}
\by E.~V.~Shkarupa
\paper Error estimation and optimization of the functional algorithms of a random walk on a grid which are applied to solving the Dirichlet problem for the Helmholtz equation
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 5
\pages 1163--1182
\mathnet{http://mi.mathnet.ru/smj1240}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2019569}
\zmath{https://zbmath.org/?q=an:1032.65010}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 5
\pages 908--925
\crossref{https://doi.org/10.1023/A:1025957324404}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186135400020}
Linking options:
  • https://www.mathnet.ru/eng/smj1240
  • https://www.mathnet.ru/eng/smj/v44/i5/p1163
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:414
    Full-text PDF :110
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024