Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 5, Pages 1142–1162 (Mi smj1239)  

This article is cited in 4 scientific papers (total in 4 papers)

The inverse spectral problem for the Sturm–Liouville operators with discontinuous coefficients

A. I. Shestakov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (281 kB) Citations (4)
References:
Abstract: We study the inverse spectral problem for the Sturm–Liouville operator whose piecewise constant coefficient $A(x)$ has discontinuity points $x_k$, $k=1,\dots,n$, and jumps $A_k=A(x_k+0)/A(x_k-0)$. We show that if the discontinuity points $x_1,\dots,x_n$ are noncommensurable, i.e., none of their linear combinations with integer coefficients vanishes; then the spectral function of the operator determines all discontinuity points $x_k$ and jumps $A_k$ uniquely. We give an algorithm for finding $x_k$ and $A_k$ in finitely many steps.
Keywords: inverse problem, discontinuous coefficient, Sturm–Liouville operator, spectral function.
Received: 28.08.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 5, Pages 891–907
DOI: https://doi.org/10.1023/A:1025905307566
Bibliographic databases:
UDC: 517.984.54
Language: Russian
Citation: A. I. Shestakov, “The inverse spectral problem for the Sturm–Liouville operators with discontinuous coefficients”, Sibirsk. Mat. Zh., 44:5 (2003), 1142–1162; Siberian Math. J., 44:5 (2003), 891–907
Citation in format AMSBIB
\Bibitem{She03}
\by A.~I.~Shestakov
\paper The inverse spectral problem for the Sturm--Liouville operators with discontinuous coefficients
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 5
\pages 1142--1162
\mathnet{http://mi.mathnet.ru/smj1239}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2019568}
\zmath{https://zbmath.org/?q=an:1042.34026}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 5
\pages 891--907
\crossref{https://doi.org/10.1023/A:1025905307566}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186135400019}
Linking options:
  • https://www.mathnet.ru/eng/smj1239
  • https://www.mathnet.ru/eng/smj/v44/i5/p1142
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :133
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024