Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 3, Pages 542–549 (Mi smj1196)  

A free associative algebra as a free module over a Specht subalgebra

A. V. Gavrilov

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $k$ be a field of characteristic 0 and let $k\langle X\rangle$ be a free associative algebra with finite basis $X$. Let $R=R(k,X)$ be the universal enveloping algebra of the square of $\operatorname{Lie}(X)$, regarded as a subalgebra of $k\langle X\rangle$ and called the Specht subalgebra of the free algebra. We prove that $k\langle X\rangle$ is a free (left) $R$-module, find sufficient conditions for some system of elements in $k\langle X\rangle$ to be a basis for this module, and obtain an explicit formula that allows us to calculate the $R$-coefficients of the elements of the free algebra over a special basis of “symmetric monomials”.
Keywords: free associative algebra, free module over a subalgebra, noncommutative symmetric polynomial.
Received: 11.12.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 3, Pages 428–434
DOI: https://doi.org/10.1023/A:1023909829715
Bibliographic databases:
UDC: 519.48
Language: Russian
Citation: A. V. Gavrilov, “A free associative algebra as a free module over a Specht subalgebra”, Sibirsk. Mat. Zh., 44:3 (2003), 542–549; Siberian Math. J., 44:3 (2003), 428–434
Citation in format AMSBIB
\Bibitem{Gav03}
\by A.~V.~Gavrilov
\paper A free associative algebra as a free module over a Specht subalgebra
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 3
\pages 542--549
\mathnet{http://mi.mathnet.ru/smj1196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1984702}
\zmath{https://zbmath.org/?q=an:1052.16020}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 3
\pages 428--434
\crossref{https://doi.org/10.1023/A:1023909829715}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183560300005}
Linking options:
  • https://www.mathnet.ru/eng/smj1196
  • https://www.mathnet.ru/eng/smj/v44/i3/p542
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024