|
Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 2, Pages 454–458
(Mi smj1189)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
The coordinatewise uniformly Kadec–Klee property in some Banach spaces
Tao Zhang Tongji University
Abstract:
We introduce a new property $UKK_c$ for a Banach space and show for an Orlicz sequence space the following: $UKK_c\Leftrightarrow H_c \Leftrightarrow\Phi\in\delta_2$. Moreover, we show that the Orlicz-direct-sum spaces $\Bigl(\sum\limits_{n=1}^\infty\oplus X_n\Bigr)_{l_{\Phi}}$ and $\Bigr(\sum\limits_{n=1}^\infty\oplus X_n\Bigr)_{l_{(\Phi)}}$ have the property $H_c$ if every $X_n$ $(n\in\mathbb{N})$ has the property $H_c$ and $\Phi\in\delta_2$.
Keywords:
Orlicz sequence space, Orlicz-direct-sum space, property $UKK_c$, property $H_c$.
Received: 04.04.2002 Revised: 27.08.2002
Citation:
Tao Zhang, “The coordinatewise uniformly Kadec–Klee property in some Banach spaces”, Sibirsk. Mat. Zh., 44:2 (2003), 454–458; Siberian Math. J., 44:2 (2003), 363–365
Linking options:
https://www.mathnet.ru/eng/smj1189 https://www.mathnet.ru/eng/smj/v44/i2/p454
|
|