Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 2, Pages 415–432 (Mi smj1185)  

This article is cited in 14 scientific papers (total in 14 papers)

Mappings of domains in $\mathbb{R}^n$ and their metric tensors

Yu. G. Reshetnyak

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We consider quasi-isometric mappings of domains in multidimensional Euclidean spaces. We establish that a mapping depends continuously in the sense of the topology of Sobolev classes on its metric tensor to within isometry of the space. In the space of metric tensors we take the topology determined by means of almost everywhere convergence. We show that if the metric tensor of a mapping is continuous then the length of the image of a rectifiable curve is determined by the same formula as in the case of mappings with continuous derivatives. (Continuity of the metric tensor of a mapping does not imply continuity of its derivatives.)
Keywords: quasi-isometric mapping, metric tensor, locally weak convergence of Jacobians, semicontinuity of functionals of calculus of variations.
Received: 09.12.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 2, Pages 332–345
DOI: https://doi.org/10.1023/A:1022945123237
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: Yu. G. Reshetnyak, “Mappings of domains in $\mathbb{R}^n$ and their metric tensors”, Sibirsk. Mat. Zh., 44:2 (2003), 415–432; Siberian Math. J., 44:2 (2003), 332–345
Citation in format AMSBIB
\Bibitem{Res03}
\by Yu.~G.~Reshetnyak
\paper Mappings of domains in $\mathbb{R}^n$ and their metric tensors
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 2
\pages 415--432
\mathnet{http://mi.mathnet.ru/smj1185}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1981377}
\zmath{https://zbmath.org/?q=an:1078.30017}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 2
\pages 332--345
\crossref{https://doi.org/10.1023/A:1022945123237}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182502000015}
Linking options:
  • https://www.mathnet.ru/eng/smj1185
  • https://www.mathnet.ru/eng/smj/v44/i2/p415
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024