Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 2, Pages 402–414 (Mi smj1184)  

This article is cited in 4 scientific papers (total in 4 papers)

The remainder term of the Taylor expansion for a holomorphic function is representable in Lagrange form

E. I. Radzievskayaa, G. V. Radzievskiib

a National University of Food Technologies
b Institute of Mathematics, Ukrainian National Academy of Sciences
Full-text PDF (228 kB) Citations (4)
References:
Abstract: We show that the remainder of the Taylor expansion for a holomorphic function can be written down in Lagrange form, provided that the argument of the function is sufficiently close to the interpolation point. Moreover, the value of the derivative in the remainder can be taken in the intersection of the disk whose diameter joins the interpolation point and the argument of the function and an arbitrary small angle whose bisectrix is the ray from the interpolation point through the argument of the function.
Keywords: holomorphic function, Taylor expansion, remainder, mean value theorem.
Received: 28.04.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 2, Pages 322–331
DOI: https://doi.org/10.1023/A:1022993006398
Bibliographic databases:
UDC: 517.547.3, 519.652
Language: Russian
Citation: E. I. Radzievskaya, G. V. Radzievskii, “The remainder term of the Taylor expansion for a holomorphic function is representable in Lagrange form”, Sibirsk. Mat. Zh., 44:2 (2003), 402–414; Siberian Math. J., 44:2 (2003), 322–331
Citation in format AMSBIB
\Bibitem{RadRad03}
\by E.~I.~Radzievskaya, G.~V.~Radzievskii
\paper The remainder term of the Taylor expansion for a holomorphic function is representable in Lagrange form
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 2
\pages 402--414
\mathnet{http://mi.mathnet.ru/smj1184}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1981376}
\zmath{https://zbmath.org/?q=an:1150.30300}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 2
\pages 322--331
\crossref{https://doi.org/10.1023/A:1022993006398}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182502000014}
Linking options:
  • https://www.mathnet.ru/eng/smj1184
  • https://www.mathnet.ru/eng/smj/v44/i2/p402
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024