Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 2, Pages 311–321 (Mi smj1177)  

This article is cited in 6 scientific papers (total in 6 papers)

A stability estimate for a solution to the problem of determination of two coefficients of a hyperbolic equation

D. I. Glushkovaa, V. G. Romanovb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (216 kB) Citations (6)
References:
Abstract: We consider the problem of determination of two coefficients $\sigma(x)$ and $q(x)$ in a hyperbolic equation. Here $\sigma(x)$ is the coefficient of the first derivative with respect to $t$ and $q(x)$ is the coefficient of the solution itself. We suppose that these coefficients are small in some norm and supported in a disk $D$. Oscillations are excited by the impulse function $\delta(t)\delta(x\cdot\nu)$ supported on the straight line $t=0$, $x\cdot\nu=0$. Here $\nu$ is a unit vector playing the role of a parameter of the problem. The acoustic field generated by this source lying outside $D$ is measured at the points of the boundary of $D$ together with the normal derivative on some time interval of a fixed length $T$ for two different values of the parameter $\nu$. We prove that, for a sufficiently large $T$, the given information determines the sought coefficients uniquely. We obtain a stability estimate for a solution to the problem.
Keywords: inverse problem, hyperbolic equation, stability, uniqueness.
Received: 23.12.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 2, Pages 250–259
DOI: https://doi.org/10.1023/A:1022928719602
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: D. I. Glushkova, V. G. Romanov, “A stability estimate for a solution to the problem of determination of two coefficients of a hyperbolic equation”, Sibirsk. Mat. Zh., 44:2 (2003), 311–321; Siberian Math. J., 44:2 (2003), 250–259
Citation in format AMSBIB
\Bibitem{GluRom03}
\by D.~I.~Glushkova, V.~G.~Romanov
\paper A stability estimate for a solution to the problem of determination of two coefficients of a hyperbolic equation
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 2
\pages 311--321
\mathnet{http://mi.mathnet.ru/smj1177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1981369}
\zmath{https://zbmath.org/?q=an:1050.35138}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 2
\pages 250--259
\crossref{https://doi.org/10.1023/A:1022928719602}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182502000007}
Linking options:
  • https://www.mathnet.ru/eng/smj1177
  • https://www.mathnet.ru/eng/smj/v44/i2/p311
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:421
    Full-text PDF :127
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024