Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 2, Pages 303–310 (Mi smj1176)  

Second order arithmetic and autonomous computability

E. V. Gailit

Novosibirsk State University
References:
Abstract: An autonomous process can be described within the second order arithmetic or within the closely related Zermelo–Fraenkel theory (without the powerset axiom), which is convenient. The following key result is proved: If some autonomous oracle gives rise to a model for the second-order arithmetic then it automatically gives a model for Zermelo–Fraenkel theory (without the powerset axiom). The latter is naturally interpreted on hereditarily countable sets which are easily representable by countable trees satisfying the chain condition. In general, every autonomous process can be described in Zermelo–Fraenkel theory (without the powerset axiom); moreover, the description is absolute for every oracle model. Hence, there is no autonomous process yielding a model for the complete theory of the second order arithmetic.
Keywords: oracle, iterated Kleene computability, autonomous enumeration, second order arithmetic, Zermelo–Fraenkel theory without the powerset axiom, Hartogs lemma.
Received: 10.09.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 2, Pages 244–249
DOI: https://doi.org/10.1023/A:1022976602764
Bibliographic databases:
UDC: 517.11:518.5
Language: Russian
Citation: E. V. Gailit, “Second order arithmetic and autonomous computability”, Sibirsk. Mat. Zh., 44:2 (2003), 303–310; Siberian Math. J., 44:2 (2003), 244–249
Citation in format AMSBIB
\Bibitem{Gai03}
\by E.~V.~Gailit
\paper Second order arithmetic and autonomous computability
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 2
\pages 303--310
\mathnet{http://mi.mathnet.ru/smj1176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1981368}
\zmath{https://zbmath.org/?q=an:1034.03048}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 2
\pages 244--249
\crossref{https://doi.org/10.1023/A:1022976602764}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182502000006}
Linking options:
  • https://www.mathnet.ru/eng/smj1176
  • https://www.mathnet.ru/eng/smj/v44/i2/p303
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :353
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024