Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 2, Pages 263–278 (Mi smj1173)  

This article is cited in 8 scientific papers (total in 8 papers)

The automorphism groups of finite type $G$-structures on orbifolds

A. V. Bagaev, N. I. Zhukova

N. I. Lobachevski State University of Nizhni Novgorod
Full-text PDF (302 kB) Citations (8)
References:
Abstract: The automorphism group of a $G$-structure of finite type and order $k$ on a smooth $n$-dimensional orbifold is proved to be a Lie group of dimension $n+\dim(\mathfrak{g}+\mathfrak{g}_1+\dots+\mathfrak{g}_{k-1})$, where $\mathfrak{g}_i$ is the $i$-th prolongation of the Lie algebra $\mathfrak{g}$ of a given group $G$. This generalizes the corresponding result by Ehresmann for finite type $G$-structures on manifolds. The presence of orbifold points is shown to sharply decrease the dimension of the automorphism group of proper orbifolds. Estimates are established for the dimension of the isometry group and the dimension of the group of conformal transformations of Riemannian orbifolds, depending on the types of orbifold points.
Keywords: $G$-structure, orbifold, automorphism.
Received: 10.11.2002
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 2, Pages 213–224
DOI: https://doi.org/10.1023/A:1022920417785
Bibliographic databases:
UDC: 514.7
Language: Russian
Citation: A. V. Bagaev, N. I. Zhukova, “The automorphism groups of finite type $G$-structures on orbifolds”, Sibirsk. Mat. Zh., 44:2 (2003), 263–278; Siberian Math. J., 44:2 (2003), 213–224
Citation in format AMSBIB
\Bibitem{BagZhu03}
\by A.~V.~Bagaev, N.~I.~Zhukova
\paper The automorphism groups of finite type $G$-structures on orbifolds
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 2
\pages 263--278
\mathnet{http://mi.mathnet.ru/smj1173}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1981365}
\zmath{https://zbmath.org/?q=an:1080.53023}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 2
\pages 213--224
\crossref{https://doi.org/10.1023/A:1022920417785}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182502000003}
Linking options:
  • https://www.mathnet.ru/eng/smj1173
  • https://www.mathnet.ru/eng/smj/v44/i2/p263
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :125
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024