|
Sibirskii Matematicheskii Zhurnal, 2004, Volume 45, Number 4, Pages 871–880
(Mi smj1111)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
On embeddings for classes of functions with generalized smoothness on metric spaces
A. S. Romanov Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
Given a metric space with a Borel measure, we consider the classes of functions whose increment is controlled by the measure of a ball containing the corresponding points and a nonnegative function summable with some power. We prove embedding theorems for these spaces defined by two different measures satisfying the doubling condition.
Keywords:
metric space, measure, Sobolev class, embedding theorem.
Received: 30.10.2003
Citation:
A. S. Romanov, “On embeddings for classes of functions with generalized smoothness on metric spaces”, Sibirsk. Mat. Zh., 45:4 (2004), 871–880; Siberian Math. J., 45:4 (2004), 722–729
Linking options:
https://www.mathnet.ru/eng/smj1111 https://www.mathnet.ru/eng/smj/v45/i4/p871
|
Statistics & downloads: |
Abstract page: | 582 | Full-text PDF : | 111 | References: | 66 |
|