Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2004, Volume 45, Number 4, Pages 780–808 (Mi smj1106)  

This article is cited in 10 scientific papers (total in 10 papers)

Complex geometry of the universal Teichmüller space

S. L. Krushkal'ab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Bar-Ilan University
References:
Abstract: We prove that all invariant distances on the universal Teichmüller space agree and are determined by the Grunsky coefficients of the naturally related conformal maps. This fact yields various important consequences; in particular, we obtain solutions of certain well-known geometric problems in complex analysis and related fields.
Keywords: Teichmüller space, Teichmüller metric, invariant distances, Kobayashi metric, Carathéodory metric, Grunsky coefficients, Green's function, plurisubharmonic function.
Received: 30.09.2003
English version:
Siberian Mathematical Journal, 2004, Volume 45, Issue 4, Pages 646–668
DOI: https://doi.org/10.1023/B:SIMJ.0000035830.46662.75
Bibliographic databases:
UDC: 517.54, 517.55
Language: Russian
Citation: S. L. Krushkal', “Complex geometry of the universal Teichmüller space”, Sibirsk. Mat. Zh., 45:4 (2004), 780–808; Siberian Math. J., 45:4 (2004), 646–668
Citation in format AMSBIB
\Bibitem{Kru04}
\by S.~L.~Krushkal'
\paper Complex geometry of the universal Teichm\"uller space
\jour Sibirsk. Mat. Zh.
\yr 2004
\vol 45
\issue 4
\pages 780--808
\mathnet{http://mi.mathnet.ru/smj1106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2091647}
\zmath{https://zbmath.org/?q=an:1132.30349}
\transl
\jour Siberian Math. J.
\yr 2004
\vol 45
\issue 4
\pages 646--668
\crossref{https://doi.org/10.1023/B:SIMJ.0000035830.46662.75}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223754300005}
Linking options:
  • https://www.mathnet.ru/eng/smj1106
  • https://www.mathnet.ru/eng/smj/v45/i4/p780
  • This publication is cited in the following 10 articles:
    1. Kuehnau R., “Quasiconformal Mappings With Replaced Dilatation”, Complex Analysis and Dynamical Systems Vi, Pt 2: Complex Analysis, Quasiconformal Mappings, Complex Dynamics, Contemporary Mathematics, 667, eds. Agranovsky M., BenArtzi M., Galloway G., Karp L., Khavinson D., Reich S., Weinstein G., Zalcman L., Amer Mathematical Soc, 2016, 181–186  crossref  zmath  isi
    2. Krushkal S.L., “the Grunsky Function and Caratheodory Metric of Teichmüller Spaces”, Complex Var. Elliptic Equ., 61:6 (2016), 803–816  crossref  mathscinet  zmath  isi  scopus
    3. Krushkal S.L., “Milin'S Coefficients, Complex Geometry of Teichmuller Spaces and Variational Calculus For Univalent Functions”, Georgian Math. J., 21:3 (2014), 313–332  crossref  mathscinet  zmath  isi  scopus
    4. Krushkal S.L., “Complex Homotopy and Grunsky Operator”, Complex Var. Elliptic Equ., 59:1, SI (2014), 48–58  crossref  mathscinet  zmath  isi  elib  scopus
    5. Samuel L. Krushkal, “Hyperbolic metrics on universal Teichmüller space and extremal problems”, J Math Sci, 182:1 (2012), 70  crossref
    6. E. M. Chirka, “Prostranstva Teikhmyullera”, Lekts. kursy NOTs, 15, MIAN, M., 2010, 3–150  mathnet  crossref  zmath  elib
    7. Samuel L. Krushkal, “The dilatation function of a holomorphic isotopy”, Funct. Approx. Comment. Math., 40:1 (2009)  crossref
    8. Krushkal S., “Complex geometry of the universal Teichmüller space. II”, Georgian Mathematical Journal, 14:3 (2007), 483–498  mathscinet  zmath  isi
    9. Shen Yu.-l., “On grunsky operator”, Science in China Series A–Mathematics, 50:12 (2007), 1805–1817  crossref  mathscinet  zmath  adsnasa  isi  scopus
    10. Krushkal S, Kuhnau R, “Grunsky inequalities and quasiconformal extension”, Israel Journal of Mathematics, 152 (2006), 49–59  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:370
    Full-text PDF :124
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025