|
Sibirskii Matematicheskii Zhurnal, 2004, Volume 45, Number 4, Pages 723–733
(Mi smj1102)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Injectivity of the spherical mean operator on the conical manifolds of spheres
M. L. Agranovskiia, E. K. Narayananb a Bar-Ilan University
b Indian Institute of Science
Abstract:
Let $f$ be a continuous function on $\mathbb{R}^n$. If $f$ has zero integral over every sphere intersecting a given subset $A$ of $\mathbb{R}^n$ and $A$ lies in no affine plane of dimension $n-2$, then $f$ vanishes identically. The condition on the dimension of $A$ is sharp.
Keywords:
spherical mean, wave equation, dependence domain.
Received: 30.03.2004
Citation:
M. L. Agranovskii, E. K. Narayanan, “Injectivity of the spherical mean operator on the conical manifolds of spheres”, Sibirsk. Mat. Zh., 45:4 (2004), 723–733; Siberian Math. J., 45:4 (2004), 597–605
Linking options:
https://www.mathnet.ru/eng/smj1102 https://www.mathnet.ru/eng/smj/v45/i4/p723
|
Statistics & downloads: |
Abstract page: | 328 | Full-text PDF : | 108 | References: | 39 |
|