Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 1, Pages 116–137 (Mi smj11)  

This article is cited in 6 scientific papers (total in 6 papers)

Graded Lie algebras with few nontrivial components

N. Yu. Makarenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (319 kB) Citations (6)
References:
Abstract: We prove that if a $(\mathbb Z/n\mathbb Z)$-graded Lie algebra $L=\bigoplus\limits_{i=0}^{n-1}L_i$ has $d$ nontrivial components $L_i$ and the null component $L_0$ has finite dimension $m$, then $L$ has a homogeneous solvable ideal of derived length bounded by a function of $d$ and of codimension bounded by a function of $m$ and $d$. An analogous result holds also for the $(\mathbb Z/n\mathbb Z)$-graded Lie rings $L=\bigoplus\limits_{i=0}^{n-1}L_i$ with few nontrivial components $L_i$ if the null component $L_0$ has finite order $m$. These results generalize Kreknin's theorem on the solvability of the $(\mathbb Z/n\mathbb Z)$-graded Lie rings $L=\bigoplus\limits_{i=0}^{n-1}L_i$ with trivial component $L_0$ and Shalev's theorem on the solvability of such Lie rings with few nontrivial components $L_i$. The proof is based on the method of generalized centralizers which was created by E. I. Khukhro for Lie rings and nilpotent groups with almost regular automorphisms of prime order [1], as well as on the technique developed in the work of N. Yu. Makarenko and E. I. Khukhro on the almost solvability of Lie algebras with an almost regular automorphism of finite order [2].
Keywords: graded Lie algebras, graded Lie rings.
Received: 07.08.2006
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 1, Pages 95–111
DOI: https://doi.org/10.1007/s11202-007-0011-7
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: N. Yu. Makarenko, “Graded Lie algebras with few nontrivial components”, Sibirsk. Mat. Zh., 48:1 (2007), 116–137; Siberian Math. J., 48:1 (2007), 95–111
Citation in format AMSBIB
\Bibitem{Mak07}
\by N.~Yu.~Makarenko
\paper Graded Lie algebras with few nontrivial components
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 1
\pages 116--137
\mathnet{http://mi.mathnet.ru/smj11}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2304883}
\zmath{https://zbmath.org/?q=an:1164.17018}
\elib{https://elibrary.ru/item.asp?id=15415038}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 1
\pages 95--111
\crossref{https://doi.org/10.1007/s11202-007-0011-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244424100011}
\elib{https://elibrary.ru/item.asp?id=13539161}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846611855}
Linking options:
  • https://www.mathnet.ru/eng/smj11
  • https://www.mathnet.ru/eng/smj/v48/i1/p116
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024