|
Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 6, Pages 1388–1392
(Mi smj1047)
|
|
|
|
This article is cited in 27 scientific papers (total in 27 papers)
Periodic groups saturated with the groups $L_2(p^n)$
A. G. Rubashkin, K. A. Filippov Krasnoyarsk State Agricultural University
Abstract:
Given an indexing set $I$ and a finite field $K_\alpha$ for each $\alpha\in I$, $\mathfrak R=\{L_2(K_\alpha)|\alpha\in I\}$ and $\mathfrak N=\{SL_2(K_\alpha)|\alpha\in I\}$. We prove that each periodic group $G$ saturated with groups in $\mathfrak R(\mathfrak N)$ is isomorphic to $L_2(P)$ (respectively $SL_2(P)$) for a suitable locally finite field $P$.
Keywords:
saturation, periodic group.
Received: 24.04.2005
Citation:
A. G. Rubashkin, K. A. Filippov, “Periodic groups saturated with the groups $L_2(p^n)$”, Sibirsk. Mat. Zh., 46:6 (2005), 1388–1392; Siberian Math. J., 46:6 (2005), 1119–1122
Linking options:
https://www.mathnet.ru/eng/smj1047 https://www.mathnet.ru/eng/smj/v46/i6/p1388
|
|