Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 6, Pages 1360–1373 (Mi smj1045)  

This article is cited in 10 scientific papers (total in 10 papers)

A nilpotent ideal in the Lie rings with automorphism of prime order

N. Yu. Makarenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We improve the conclusion in Khukhro's theorem stating that a Lie ring (algebra) $L$ admitting an automorphism of prime order $p$ with finitely many $m$ fixed points (with finite-dimensional fixed-point subalgebra of dimension $m$) has a subring (subalgebra) $H$ of nilpotency class bounded by a function of $p$ such that the index of the additive subgroup $|L:H|$ (the codimension of $H$) is bounded by a function of $m$ and $p$. We prove that there exists an ideal, rather than merely a subring (subalgebra), of nilpotency class bounded in terms of $p$ and of index (codimension) bounded in terms of $m$ and $p$. The proof is based on the method of generalized, or graded, centralizers which was originally suggested in [E. I. Khukhro, Math. USSR Sbornik 71 (1992) 51–63]. An important precursor is a joint theorem of the author and E. I. Khukhro on almost solubility of Lie rings (algebras) with almost regular automorphisms of finite order.
Keywords: Lie rings, Lie algebras, automorphisms of Lie rings, automorphisms of Lie algebras, almost regular automorphisms, graded Lie rings, graded Lie algebras.
Received: 07.06.2005
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 6, Pages 1097–1107
DOI: https://doi.org/10.1007/s11202-005-0104-0
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: N. Yu. Makarenko, “A nilpotent ideal in the Lie rings with automorphism of prime order”, Sibirsk. Mat. Zh., 46:6 (2005), 1360–1373; Siberian Math. J., 46:6 (2005), 1097–1107
Citation in format AMSBIB
\Bibitem{Mak05}
\by N.~Yu.~Makarenko
\paper A nilpotent ideal in the Lie rings with automorphism of prime order
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 6
\pages 1360--1373
\mathnet{http://mi.mathnet.ru/smj1045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195035}
\zmath{https://zbmath.org/?q=an:1118.17003}
\elib{https://elibrary.ru/item.asp?id=13494316}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 6
\pages 1097--1107
\crossref{https://doi.org/10.1007/s11202-005-0104-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234073700012}
Linking options:
  • https://www.mathnet.ru/eng/smj1045
  • https://www.mathnet.ru/eng/smj/v46/i6/p1360
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025