Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 4, Pages 733–748 (Mi smj1000)  

This article is cited in 12 scientific papers (total in 12 papers)

On the self-similar Jordan arcs admitting structure parametrization

V. V. Aseeva, A. V. Tetenovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Gorno-Altaisk State University
References:
Abstract: We study the attractors $\gamma$ of a finite system $\mathscr{S}$ of contraction similarities $S_j$ $(j=1,\dots,m)$ in $\mathbb{R}^d$ which are Jordan arcs. We prove that if a system $\mathscr{S}$ possesses a structure parametrization $(\mathscr{T},\varphi)$ and $\mathscr{F}(\mathscr{T})$ is the associated family of $\mathscr{T}$ then we have one of the following cases:
1. The identity mapping $\operatorname{Id}$ does not belong to the closure of $\mathscr{F}(\mathscr{T})$. Then $\mathscr{S}$ (if properly rearranged) is a Jordan zipper.
2. The identity mapping $\operatorname{Id}$ is a limit point of $\mathscr{F}(\mathscr{T})$. Then the arc $\gamma$ is a straight line segment.
3. The identity mapping $\operatorname{Id}$ is an isolated point of $\overline{\mathscr{F}(\mathscr{T})}$.
We construct an example of a self-similar Jordan curve which implements the third case.
Keywords: attractor, self-similar fractal, Jordan arc, Hausdorff measure, Hausdorff dimension, similarity dimension.
Received: 04.02.2004
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 4, Pages 581–592
DOI: https://doi.org/10.1007/s11202-005-0059-1
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: V. V. Aseev, A. V. Tetenov, “On the self-similar Jordan arcs admitting structure parametrization”, Sibirsk. Mat. Zh., 46:4 (2005), 733–748; Siberian Math. J., 46:4 (2005), 581–592
Citation in format AMSBIB
\Bibitem{AseTet05}
\by V.~V.~Aseev, A.~V.~Tetenov
\paper On the self-similar Jordan arcs admitting structure parametrization
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 4
\pages 733--748
\mathnet{http://mi.mathnet.ru/smj1000}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2169393}
\zmath{https://zbmath.org/?q=an:1117.54052}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 4
\pages 581--592
\crossref{https://doi.org/10.1007/s11202-005-0059-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231331700002}
Linking options:
  • https://www.mathnet.ru/eng/smj1000
  • https://www.mathnet.ru/eng/smj/v46/i4/p733
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:453
    Full-text PDF :120
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024