Abstract:
Order estimates are obtained for the Kolmogorov widths of intersections of two finite-dimensional balls in the mixed norm under certain conditions on parameters.
Bibliography: 27 titles.
Keywords:Kolmogorov widths, intersection of finite-dimensional balls.
We consider the order estimate problem for the Kolmogorov widths of intersections of two finite-dimensional balls in the mixed norm.
First we give the requisite definitions and notation.
Let $m, k\in \mathbb{N}$, $1\leqslant p<\infty$ and $1\leqslant \theta<\infty$. We let $l_{p,\theta}^{m,k}$ denote the space $\mathbb{R}^{mk}$ equipped with the norm
For $p=\infty$ or $\theta=\infty$ the corresponding modifications are clear.
The unit ball of the space $l_{p,\theta}^{m,k}$ is denoted by $B_{p,\theta}^{m,k}$. For $k=1$, the space and the unit ball are denoted, respectively, by $l_p^m$ and $B_p^m$.
Let $X$ be a normed space, let $M\subset X$ and $n\in \mathbb{Z}_+$. Then the Kolmogorov $n$-width of the set $M$ in $X$ is defined by
here ${\cal L}_n(X)$ is the set of all subspaces in $X$ of dimension $\leqslant n$. For more on widths, see, for example, [1]–[3].
The exact values of the widths $d_n(B_p^m, l_q^m)$ were found in [4], [5] (for $p\geqslant q$) and in [6], [7] (for $p=1$ and $q=2$). For $p\leqslant q<\infty$ order estimates were obtained in [8] and [9]. The problem of estimating $d_n(B_p^m, l_\infty^m)$ was considered in [10]–[12]: order estimates are known for $p\geqslant 2$; for $1\leqslant p<2$ the corresponding values are known up to a factor of $\log (em/n)$ in some power.
Approximative characteristics of the balls $B^{m,k}_{p,\theta}$ in the space $l^{m,k}_{q,\sigma}$ are important for the study of Besov classes with dominating mixed smoothness (see [13]–[15]) and weighted Besov classes (see [16]). The Kolmogorov widths $d_n(B^{m,k}_{p,\theta}, l^{m,k}_{q,\sigma})$ for $n \leqslant mk/{2}$ were estimated in [14] and [16]–[21] (more precisely, the paper [14] was concerned with Gelfand widths, but if $p$, $\theta$, $q$, $\sigma \geqslant 1$, then this problem can be reformulated in terms of Kolmogorov widths; see [22]). Order estimates were obtained for the following values of the parameters:
1) (see [17]) $p=1$, $\theta=\infty$, $q=2$ and $1<\sigma <\infty$;
2) (see [18]) $p=1$ or $p=\infty$ and $\theta=\infty$, under one of the conditions: (a) $q=2$, $1<\sigma \leqslant \infty$; (b) $1<q\leqslant \min \{2, \sigma\}$;
3) (see [20]) $p=\theta$, $q=2$ and $\sigma=1$, where $p=1$ or $2\leqslant p\leqslant \infty$;
4) (see [16]) $2\leqslant q<\infty$, $2\leqslant \sigma <\infty$, $1\leqslant p\leqslant q$, $1\leqslant \theta \leqslant \sigma$ and $n\leqslant a(q, \sigma)mk$ (here $a(q, \sigma)$ is some positive number);
5) (see [21]) $p=1$, $\theta=\infty$, $q=2$ and $\sigma=1$ (previously, in [19], estimates were obtained up to a logarithmic factor), and also $p\leqslant q\leqslant 2$ and $\theta \geqslant \sigma$;
6) (see [14]) (a) $p=q=2$, $\theta\geqslant 2$ and $\sigma=\infty$; (b) $p=\theta=\sigma\geqslant 2$ and $q=\infty$.
In addition, Galeev [23] obtained a lower estimate in the case when $1\leqslant p\leqslant \infty$, $\theta=\infty$, $2\leqslant q<\infty$, $\sigma=q$ and $n\leqslant c(q)mk$ (where $c(q)$ is some positive number).
The problem of estimates for the widths of the intersection of a family of Sobolev or Besov classes (see [13], [17], [24] and [25]) can be reduced, via discretization, to that of estimates for the widths $d_n(\bigcap _{\alpha \in A} \nu_\alpha B^m_{p_\alpha}, l_q^m)$ of intersections of balls. Galeev [24] found order estimates for this quantity for $n=m/{2}$; in [26] this result was extended to $n \leqslant {m}/{2}$.
The problem of estimates for the widths of intersections of finite-dimensional balls in the mixed norm is natural. The results obtained in this way can be used to estimate the widths of intersections of weighed Besov classes or Besov classes with dominating mixed smoothness. In the present paper we consider the case of two balls $\nu_i B^{m,k}_{p_i,\theta_i}$, $i=1, 2$, where we assume that $2\leqslant q<\infty$, $2\leqslant \sigma <\infty$, $1\leqslant p_i\leqslant q$ and $1\leqslant \theta_i\leqslant \sigma$, $i=1, 2$. It turns out that for this range of parameters the above problem can be reduced to the evaluation of widths of a single ball in mixed norms; the orders of these widths were already found in [16] (see Theorem 1 below).
Given two sets $X$ and $Y$ and functions $f_1$, $f_2\colon X\times Y\to \mathbb{R}_+$, we write
In [16] this theorem was proved for $n \leqslant a(q, \sigma)mk$; in addition, in its statement in [16] the constants in order equalities depend on $p$, $\theta$, $q$ and $\sigma$. However, the proof shows that they are independent of $p$ and $\theta$. The upper estimate holds for all $n\leqslant mk$. For $a(q, \sigma)mk \leqslant n \leqslant mk/{2}$ the lower estimate is proved in § 2 (the corollary).
Note that if $2\leqslant p\leqslant q$, $2\leqslant \theta\leqslant \sigma$ and $\lambda_{p,q}= \lambda_{\theta,\sigma}$, then
Theorem 2. Let $m$, $k\in \mathbb{N}$, $n\in \mathbb{Z}_+$, $n\leqslant {mk}/{2}$, ${2\leqslant q<\infty}$, $2\leqslant \sigma < \infty$, ${1\,{\leqslant}\, p_i\,{\leqslant}\, q}$, $1\leqslant \theta_i\leqslant \sigma$ and $\nu_i>0$, $i=1, 2$. Let $\Phi_j=\Phi_j(m,k,n,p_1,p_2,\theta_1,\theta_2,q,\sigma,\nu_1,\nu_2)$, $j=1, \dots, 5$, be defined by:
1) $\Phi_j=\nu_j d_n(B^{m,k}_{p_j,\theta_j}, l^{m,k}_{q,\sigma})$ for $j=1, 2$;
2) if $p_1\ne 2$ and there exists $\widetilde \lambda \in (0, 1)$ such that $\frac 12= \frac{1-\widetilde \lambda}{p_1}+\frac{\widetilde \lambda}{p_2}$, then $\Phi_3= \nu_1^{1-\widetilde \lambda}\nu_2^{\widetilde \lambda} d_n(B^{m,k}_{2,\widetilde\theta}, l^{m,k}_{q,\sigma})$, where $\widetilde \theta$ is defined by the equality $\frac{1}{\widetilde \theta}=\frac{1-\widetilde \lambda}{\theta_1}+\frac{\widetilde \lambda}{\theta_2}$; otherwise set $\Phi_3=+\infty$;
3) if $\theta_1\ne 2$ and there exists $\widetilde \mu \in (0, 1)$ such that $\frac 12= \frac{1-\widetilde \mu}{\theta_1}+\frac{\widetilde \mu}{\theta_2}$, then $\Phi_4=\nu_1^{1-\widetilde \mu}\nu_2^{\widetilde \mu} d_n(B^{m,k}_{\widetilde p,2}, l^{m,k}_{q,\sigma})$, where $\widetilde p$ is defined by the equality $\frac{1}{\widetilde p}=\frac{1-\widetilde \mu}{p_1}+ \frac{\widetilde \mu}{p_2}$; otherwise set $\Phi_4=+\infty$;
4) if $q>2$, $\sigma>2$ and $\frac{1/p_1-1/q}{1/2-1/q}\ne \frac{1/\theta_1-1/\sigma}{1/2-1/\sigma}$, and if there exist $\lambda \in (0, 1)$, $p\in (2, q]$ and $\theta\in (2, \sigma]$ such that $\frac 1p=\frac{1-\lambda}{p_1}+ \frac{\lambda}{p_2}$, $\frac{1}{\theta}=\frac{1-\lambda}{\theta_1}+ \frac{\lambda}{\theta_2}$ and $\lambda_{p,q}=\lambda_{\theta,\sigma}$, then $\Phi_5=\nu_1^{1-\lambda}\nu_2^{\lambda} d_n(B^{m,k}_{p,\theta}, l^{m,k}_{q,\sigma})$; otherwise set $\Phi_5=+\infty$.
where $S_m$ and $S_k$ are the permutation groups on $m$ and $k$ elements, respectively. For $x=(x_{i,j})_{1\leqslant i\leqslant m, 1\leqslant j\leqslant k}\in \mathbb{R}^{mk}$, $\gamma=(\tau_1, \tau_2, \varepsilon_1, \varepsilon_2)\in G$, $\varepsilon_1=(\varepsilon_{1,i})_{1\leqslant i\leqslant m}$ and $\varepsilon_2=(\varepsilon_{2,j})_{1\leqslant j\leqslant k}$ we set
It was shown in [16], formula (34), that if $2\leqslant q<\infty$, $2\leqslant \sigma<\infty$, $n\in \mathbb{Z}_+$ and $n\leqslant a(q, \sigma) m^{2/q}k^{2/\sigma}r^{1-2/q} l^{1-2/\sigma}$, then
where $a(q, \sigma)>0$ and $b(q, \sigma)>0$; in addition, the function $a(\,\cdot\,{,}\,\cdot\,) $ is nonincreasing in each argument and the function $b(\,\cdot\,{,}\,\cdot\,)$ is continuous. Here we obtain an estimate for all $n\leqslant mk/2$. The proof depends on Gluskin’s method presented in [8].
Proposition. Let $2\leqslant q<\infty$, $2\leqslant \sigma <\infty$, $n\in \mathbb{Z}_+$ and $n\leqslant mk/2$. Then
Proof. For $n\leqslant a(q, \sigma)m^{2/q}k^{2/\sigma}r^{1-2/q} l^{1-2/\sigma}$ the required estimate follows from inequality (8).
Consider the case when $a(q, \sigma)m^{2/q}k^{2/\sigma}r^{1-2/q} l^{1-2/\sigma} \leqslant n\leqslant a(q, \sigma)mk$. Then there exist numbers $\widetilde q\in [2, q]$ and $\widetilde \sigma \in [2, \sigma]$ such that
We follow the argument from [16], pp. 14–17, in this more simple case; instead of using inequality (35) from [16], we use the formula for the square of a sum, while Hölder’s and Young’s inequalities are not required at the end of the proof. As a result, for some $\xi \in \mathbb{R}$ we have
Proof. For $\min\{p, \theta\}\geqslant 2$ (respectively, for $\theta \leqslant 2\leqslant p$, $p\leqslant 2 \leqslant \theta$, or ${\max\{p, \theta\}\leqslant 2}$), we use the inclusion $m^{-1/p}k^{-1/\theta}V^{m,k}_{m,k} \subset B^{m,k}_{p,\theta}$ (respectively, the inclusion $m^{-1/p}V^{m,k}_{m,1}\subset B^{m,k}_{p,\theta}$, $k^{-1/\theta}V^{m,k}_{1,k} \subset B^{m,k}_{p,\theta}$, or $V^{m,k}_{1,1}\subset B^{m,k}_{p,\theta}$). Now the required estimate follows from (9). This proves the corollary.
In what follows we assume that $m$, $k\in \mathbb{N}$, $n\in \mathbb{Z}_+$, $n\leqslant mk/2$ and $\nu_i>0$, $1=1, 2$.
Lemma 1. Let $1\leqslant p_i\leqslant \infty$, $1\leqslant \theta_i\leqslant \infty$, $\lambda \in [0, 1]$, and let $p$, $\theta\in [1, \infty]$ be defined by
Let $\beta$ be defined by the equality $\frac{\beta}{p}=\frac{\lambda}{p_2}$. From (12) we obtain $\frac{1-\beta}{p}=\frac{1-\lambda}{p_1}$, and so $\beta \in [0, 1]$. Applying Hölder’s inequality, for each $j\in \{1, \dots, k\}$ we have
Let $\gamma$ be defined by $\frac{\gamma}{\theta}=\frac{\lambda}{\theta_2}$. Then $\frac{1-\gamma}{\theta} \stackrel{(12)}{=} \frac{1-\lambda}{\theta_1}$, which shows that $\gamma \in [0, 1]$. Another appeal to Hölder’s inequality shows that
Proof. By the inclusion $\min\{\nu_1, \nu_2\} V^{m,k}_{1,1} \subset \nu_1B^{m,k}_{p_1,\theta_1}\cap \nu_2B^{m,k}_{p_2,\theta_2}$ and the above proposition we have
Proof. Let $1\leqslant \widetilde r\leqslant m$ and $1\leqslant \widetilde l\leqslant k$ satisfy (14). We set $r=\lceil \widetilde r\rceil$, $l=\lceil \widetilde l \rceil$ and $W=\nu_1^{1-\lambda} \nu_2^\lambda r^{-1/p}l^{-1/\theta} V_{r,l}^{m,k}$. By Lemma 2
where $\alpha \in [0, 1]$ is chosen to satisfy (14); such $\alpha $ exists by (21), (22), (23), and (24), respectively. In each case, from the corresponding restriction on $n$ we obtain ${1\leqslant \widetilde r \leqslant m}$ and $1\leqslant \widetilde l\leqslant k$.
By (28)–(31) we have $n\leqslant m^{2/q} k^{2/\sigma} r^{1-2/q} l^{1-2/\sigma}$. Hence
the number $\alpha \in [0, 1]$ is chosen so as to have ${\nu_1}/{\nu_2}=m^{1/p_1-1/p_2} \widetilde l^{\,1/\theta_1 -1/\theta_2}$. Since $mk^{2/\sigma} \leqslant n \leqslant mk$, we have $1\leqslant l\leqslant k$. By Lemma 2, $W \subset 4(\nu_1B_{p_1,\theta_1}^{m,k}\cap \nu_2 B_{p_2,\theta_2}^{m,k})$. We also note that $n \geqslant m^{2/q} k^{2/\sigma} m^{1-2/q} l^{1-2/\sigma}$. Hence
Proof. We prove assertion 1 (the proof of assertion 2 is similar).
If $m^{2/q}k^{2/\sigma} < n \leqslant mk^{2/\sigma}$, then $q>2$ and the formula for $r_0$ is correct.
We set $r=\lfloor r_0^\alpha \rfloor$, where $\alpha \in [0, 1]$ is chosen so as to have ${\nu_1}/{\nu_2}=r_0^{\alpha(1/p_1-1/p_2)}$. By the definition of $r_0$ we have $1\leqslant r\leqslant m$. By Lemma 2,
for otherwise we can replace $p_i$ and $\theta_i$ by sufficiently close quantities for which the above conditions are satisfied (here we use the fact that the functions $D_{m,k,n,q,\sigma}$ are continuous; if $\widetilde \Phi_j=+\infty$, then we can shift $p_i$ and $\theta_i$ so that this condition still holds). As a result, $(1/p_i, 1/\theta_i)$ lies in one of the following domains:
Case 1: $\Psi=\widetilde \Phi_j$, where $j\in \{1, 2\}$. We can assume without loss of generality that $j=1$. Let $(1/p_1, 1/\theta_1)\in G_i$ for some $i\in \{1, \dots, 5\}$. We set
Hence $\lambda_*>0$. If $\lambda_*=1$, then $(p_*, \theta_*)=(p_2, \theta_2)$; in other cases $(p_*, \theta_*)=(2, \widetilde \theta)$, $(p_*, \theta_*)=(\widetilde p, 2)$, or $(p_*, \theta_*)=(p, \theta)$. Now using the condition $\Psi=\widetilde \Phi_1$ we find that
for $mk^{2/\sigma}< n\leqslant mk/2$. This implies (15). It remains to invoke Lemma 4. The case when $p_1>2$, $\theta_1>2$ and $\lambda_{p_1,q}> \lambda_{\theta_1,\sigma}$ is dealt with similarly.
Let $p_1>2$ and $\theta_1<2$. From (32) and (2) we arrive at (15) again, and now the estimate for widths follows from Lemma 4. The case when $p_1<2$ and $\theta_1>2$ is similar.
Let $p_1<2$ and $\theta_1<2$. Then by (32) and (1) we have $\nu_1\leqslant \nu_2$. It remains to employ Lemma 3.
Before we turn to the remaining cases, we note that the condition $(1/2, 1/2) \notin [(1/p_1, 1/\theta_1), (1/p_2, 1/\theta_2)]$ implies that $\widetilde \theta \ne 2$ for $\Psi=\widetilde \Phi_3$ and $\widetilde p\ne 2$ for $\Psi=\widetilde \Phi_4$.
Case 2a: $\Psi=\widetilde \Phi_3$ and $\widetilde \theta<2$. We can assume without loss of generality that $p_1>p_2$.
Note that on the line segment $[(1/p_1, 1/\theta_1), (1/p_2, 1/\theta_2)]$ sufficiently small half-neighbourhoods of the point $(1/2, 1/\widetilde \theta)$ lie in $G_1$ and $G_3$, respectively. We set
We have $(1/p_{**}, 1/\theta_{**})\in G_1$, and now from (1) and the second inequality in (35) we find that ${\nu_1}/{\nu_2}\leqslant 1$. Next, from (2) and the first inequality in (35) we see that if $n\leqslant mk^{2/\sigma}$, then
and if $n> mk^{2/\sigma}$, then ${\nu_1}/{\nu_2} \geqslant m^{1/p_1-1/p_2}$. Now it remains to use Lemma 7.
Case 2b: $\Psi=\widetilde \Phi_4$ and $\widetilde p<2$. We argue as in Case 2a.
Case 3a: $\Psi=\widetilde \Phi_3$ and $\widetilde \theta>2$.
We can assume without loss of generality that $p_1>p_2$.
Note that on the line segment $[(1/p_1, 1/\theta_1), (1/p_2, 1/\theta_2)]$ sufficiently small half-neighbourhoods of the point $(1/2, 1/\widetilde \theta)$ lie in $G_2$ and $G_5$, respectively. We set
Hence $\nu_1^{1-\widetilde \lambda}\nu_2^{\widetilde \lambda}D_{m,k,n,q,\sigma}(2, \widetilde \theta)=\nu_1^{1-\lambda_{**}}\nu_2^{\lambda_{**}}D_{m,k,n,q,\sigma}(p_{**}, \theta_{**})$, which gives us ${\Psi=\widetilde\Phi_2}$ or ${\Psi=\widetilde \Phi_4}$ and $\widetilde p<2$. These cases have already been taken care of.
In the case when $n> m^{2/q}k$, from (35) and (3) we obtain
Note that on the interval $[(1/p_1, 1/\theta_1), (1/p_2, 1/\theta_2)]$ sufficiently small half-neighbourhoods of the point $(1/p, 1/\theta)$ lie in $G_4$ and $G_5$. We set
V. M. Tikhomirov, Some questions in approximation theory, Publishing house of Moscow University, Moscow, 1976, 304 pp. (Russian)
2.
V. M. Tikhomirov, “Approximation theory”, Analysis, v. II, Encyclopaedia Math. Sci., 14, Convex analysis and approximation theory, Springer-Verlag, Berlin, 1990, 93–243
3.
A. Pinkus, $n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985, x+291 pp.
4.
A. Pietsch, “$s$-numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223
5.
M. I. Stesin, “Aleksandrov diameters of finite-dimensional sets and classes of smooth functions”, Soviet Math. Dokl., 16 (1975), 252–256
6.
A. N. Kolmogorov, A. A. Petrov and Yu. M. Smirnov, “A formula of Gauss in the theory of the method of least squares”, Izv. Akad. Nauk SSSR Ser. Mat., 11:6 (1947), 561–566 (Russian)
7.
S. B. Stechkin, “On a best approximation of prescribed function classes by arbitrary polynomials”, in: “Proceeding of the Moscow Mathematical Society”, Uspekhi Mat. Nauk, 9:1(59) (1954), 133–134 (Russian)
8.
E. D. Gluskin, “Some finite-dimensional problems in the theory of widths”, Vestn. Leningr. Univ., 13 (1981), 5–10 (Russian)
9.
E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets”, Math. USSR-Sb., 48:1 (1984), 173–182
10.
B. S. Kashin, “The widths of octahedra”, Uspekhi Mat. Nauk, 30:4(184) (1975), 251–252 (Russian)
11.
B. S. Kašin (Kashin), “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333
12.
A. Yu. Garnaev and E. D. Gluskin, “On widths of the Euclidean ball”, Soviet Math. Dokl., 30:1 (1984), 200–204
13.
È. M. Galeev, “Widths of function classes and finite-dimensional sets”, Vladikavkaz. Mat. Zh., 13:2 (2011), 3–14 (Russian)
14.
S. Dirksen and T. Ullrich, “Gelfand numbers related to structured sparsity and Besov space embeddings with small mixed smoothness”, J. Complexity, 48 (2018), 69–102
15.
J. Vybíral, “Function spaces with dominating mixed smoothness”, Dissertationes Math., 436 (2006), 1–73
16.
A. A. Vasil'eva, “Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin”, J. Approx. Theory, 167 (2013), 1–41
17.
È. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Math. USSR-Izv., 36:2 (1991), 435–448
18.
E. M. Galeev, “Kolmogorov $n$-width of some finite-dimensional sets in a mixed measure”, Math. Notes, 58:1 (1995), 774–778
19.
A. D. Izaak, “Kolmogorov widths in finite-dimensional spaces with mixed norms”, Math. Notes, 55:1 (1994), 30–36
20.
A. D. Izaak, “Widths of Hölder–Nikol'skii classes and finite-dimensional
subsets in spaces with mixed norm”, Math. Notes, 59:3 (1996), 328–330
21.
Yu. V. Malykhin and K. S. Ryutin, “The product of octahedra is badly approximated in the $\ell_{2,1}$-metric”, Math. Notes, 101:1 (2017), 94–99
22.
A. D. Ioffe and V. M. Tikhomirov, “Duality of convex functions and extremum problems”, Russian Math. Surveys, 23:6 (1968), 53–124
23.
È. M. Galeev, “Estimate for the Kolmogorov widths of the classes $H_p^r$ of periodic functions of several variables with low smoothness”, Theory of functions and its applications (Moscow State University 1985), Publishing house of Moscow University, Moscow, 1986, 17–24 (Russian)
24.
È. M. Galeev, “The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets”, Math. Notes, 29:5 (1981), 382–388
25.
A. A. Vasil'eva, “Kolmogorov widths of an intersection of a finite family of Sobolev classes”, Izv. Ross. Akad. Nauk Ser. Mat., 88:1 (2024), 18–42
26.
A. A. Vasil'eva, “Kolmogorov widths of intersections of finite-dimensional balls”, J. Complexity, 72 (2022), 101649, 15 pp.
27.
A. A. Vasil'eva, “Kolmogorov widths of the intersection of two finite-dimensional balls in a mixed norm”, Math. Notes, 113:4 (2023), 584–586
Citation:
A. A. Vasil'eva, “Estimates for the Kolmogorov widths of an intersection of two balls in a mixed norm”, Sb. Math., 215:1 (2024), 74–89
\Bibitem{Vas24}
\by A.~A.~Vasil'eva
\paper Estimates for the Kolmogorov widths of an intersection of two balls in a~mixed norm
\jour Sb. Math.
\yr 2024
\vol 215
\issue 1
\pages 74--89
\mathnet{http://mi.mathnet.ru//eng/sm9877}
\crossref{https://doi.org/10.4213/sm9877e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4741223}
\zmath{https://zbmath.org/?q=an:07878629}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024SbMat.215...74V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001224793300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85192686211}
Linking options:
https://www.mathnet.ru/eng/sm9877
https://doi.org/10.4213/sm9877e
https://www.mathnet.ru/eng/sm/v215/i1/p82
This publication is cited in the following 2 articles: