Abstract:
Two theorems are proved on the existence, asymptotics, and stability of smooth invariant tori bifurcating from the zero equilibrium state and associated with parabolic systems with small diffusion under Neumann boundary conditions.
Citation:
Yu. S. Kolesov, “Bifurcation of invariant tori of parabolic systems with small diffusion”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 367–378
\Bibitem{Kol93}
\by Yu.~S.~Kolesov
\paper Bifurcation of invariant tori of parabolic systems with small diffusion
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 78
\issue 2
\pages 367--378
\mathnet{http://mi.mathnet.ru/eng/sm974}
\crossref{https://doi.org/10.1070/SM1994v078n02ABEH003474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1220621}
\zmath{https://zbmath.org/?q=an:0817.35038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PD76700006}
Linking options:
https://www.mathnet.ru/eng/sm974
https://doi.org/10.1070/SM1994v078n02ABEH003474
https://www.mathnet.ru/eng/sm/v184/i3/p121
This publication is cited in the following 33 articles:
E. P. Kubyshkin, “Averaging Method in the Problem of Constructing Self-Oscillatory Solutions of Distributed Kinetic Systems”, Comput. Math. and Math. Phys., 64:12 (2024), 2868
S D Glyzin, A Yu Kolesov, N Kh Rozov, “Traveling-wave solutions in continuous chains of unidirectionally coupled oscillators”, J. Phys.: Conf. Ser., 937 (2017), 012015
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Autowave processes in continual chains of unidirectionally coupled oscillators”, Proc. Steklov Inst. Math., 285 (2014), 81–98
Bratus' A.S., Lukasheva E.N., “Stability and the limit behavior of the open distributed hypercycle system”, Differ. Equ., 45:11 (2009), 1564–1576
Samoilenko A.M., Belan E.P., “Rotating Waves of the Phenomenological Equation of Spin Combustion”, Dokl. Math., 78:1 (2008), 612–616
A. Yu. Kolesov, N. Kh. Rozov, “The buffer property in a non-classical hyperbolic
boundary-value problem from radiophysics”, Sb. Math., 197:6 (2006), 853–885
Samoilenko A.M., Belan E.P., “Dynamics of Traveling Waves in the Phenomenological Equation of Spin Combustion”, Dokl. Math., 73:1 (2006), 134–137
A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Buffer Phenomenon in Nonlinear Physics”, Proc. Steklov Inst. Math., 250 (2005), 102–168
A. Yu. Kolesov, N. Kh. Rozov, “Optical Buffering and Mechanisms for Its Occurrence”, Theoret. and Math. Phys., 140:1 (2004), 905–917
A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain”, Math. Notes, 75:5 (2004), 617–622
Kolesov A., Rozov N., “The Buffer Phenomenon in Combustion Theory”, Dokl. Math., 69:3 (2004), 469–472
A. Yu. Kolesov, N. Kh. Rozov, “The existence of countably many stable cycles for a generalized cubic Schrödinger equation in a planar domain”, Izv. Math., 67:6 (2003), 1213–1242
A. Yu. Kolesov, N. Kh. Rozov, “Two-Frequency Autowave Processes in the Complex Ginzburg–Landau Equation”, Theoret. and Math. Phys., 134:3 (2003), 308–325
Kolesov A., Kulikov A., Rozov N., “Invariant Tori of a Class of Point Transformations: Preservation of an Invariant Torus Under Perturbations”, Differ. Equ., 39:6 (2003), 775–790
A. Yu. Kolesov, N. Kh. Rozov, “Impact of quadratic non-linearity on the dynamics
of periodic solutions of a wave equation”, Sb. Math., 193:1 (2002), 93–118
A. Yu. Kolesov, N. Kh. Rozov, “The Bufferness Phenomenon in the RCLG Seft-excited Oscillator: Theoretical Analysis and Experiment Results”, Proc. Steklov Inst. Math., 233 (2001), 143–196
A. Yu. Kolesov, N. Kh. Rozov, “The buffer phenomenon in a mathematical model of the van der Pol self-oscillator with distributed parameters”, Izv. Math., 65:3 (2001), 485–501
Yu. S. Kolesov, “Justification of the method of quasinormal forms for Hutchinson's equation with a small diffusion coefficient”, Izv. Math., 65:4 (2001), 749–768
Kolesov A., Rozov N., “The Bufferness Phenomenon in Distributed Mechanical System”, Pmm-J. Appl. Math. Mech., 65:2 (2001), 179–193
A. Yu. Kolesov, N. Kh. Rozov, “Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain”, Theoret. and Math. Phys., 125:2 (2000), 1476–1488