Abstract:
Two theorems are proved on the existence, asymptotics, and stability of smooth invariant tori bifurcating from the zero equilibrium state and associated with parabolic systems with small diffusion under Neumann boundary conditions.
Citation:
Yu. S. Kolesov, “Bifurcation of invariant tori of parabolic systems with small diffusion”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 367–378
\Bibitem{Kol93}
\by Yu.~S.~Kolesov
\paper Bifurcation of invariant tori of parabolic systems with small diffusion
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 78
\issue 2
\pages 367--378
\mathnet{http://mi.mathnet.ru/eng/sm974}
\crossref{https://doi.org/10.1070/SM1994v078n02ABEH003474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1220621}
\zmath{https://zbmath.org/?q=an:0817.35038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PD76700006}
Linking options:
https://www.mathnet.ru/eng/sm974
https://doi.org/10.1070/SM1994v078n02ABEH003474
https://www.mathnet.ru/eng/sm/v184/i3/p121
This publication is cited in the following 33 articles: