Loading [MathJax]/jax/output/SVG/config.js
Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 78, Issue 2, Pages 367–378
DOI: https://doi.org/10.1070/SM1994v078n02ABEH003474
(Mi sm974)
 

This article is cited in 33 scientific papers (total in 33 papers)

Bifurcation of invariant tori of parabolic systems with small diffusion

Yu. S. Kolesov

P. G. Demidov Yaroslavl State University
References:
Abstract: Two theorems are proved on the existence, asymptotics, and stability of smooth invariant tori bifurcating from the zero equilibrium state and associated with parabolic systems with small diffusion under Neumann boundary conditions.
Received: 16.05.1990
Bibliographic databases:
UDC: 517.926
MSC: Primary 35K45, 35B32, 35K57; Secondary 35A05, 58F14, 35B35, 35B40
Language: English
Original paper language: Russian
Citation: Yu. S. Kolesov, “Bifurcation of invariant tori of parabolic systems with small diffusion”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 367–378
Citation in format AMSBIB
\Bibitem{Kol93}
\by Yu.~S.~Kolesov
\paper Bifurcation of invariant tori of parabolic systems with small diffusion
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 78
\issue 2
\pages 367--378
\mathnet{http://mi.mathnet.ru/eng/sm974}
\crossref{https://doi.org/10.1070/SM1994v078n02ABEH003474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1220621}
\zmath{https://zbmath.org/?q=an:0817.35038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PD76700006}
Linking options:
  • https://www.mathnet.ru/eng/sm974
  • https://doi.org/10.1070/SM1994v078n02ABEH003474
  • https://www.mathnet.ru/eng/sm/v184/i3/p121
  • This publication is cited in the following 33 articles:
    1. E. P. Kubyshkin, “Averaging Method in the Problem of Constructing Self-Oscillatory Solutions of Distributed Kinetic Systems”, Comput. Math. and Math. Phys., 64:12 (2024), 2868  crossref
    2. S D Glyzin, A Yu Kolesov, N Kh Rozov, “Traveling-wave solutions in continuous chains of unidirectionally coupled oscillators”, J. Phys.: Conf. Ser., 937 (2017), 012015  crossref
    3. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Autowave processes in continual chains of unidirectionally coupled oscillators”, Proc. Steklov Inst. Math., 285 (2014), 81–98  mathnet  crossref  crossref  isi  elib  elib
    4. Bratus' A.S., Lukasheva E.N., “Stability and the limit behavior of the open distributed hypercycle system”, Differ. Equ., 45:11 (2009), 1564–1576  crossref  mathscinet  zmath  isi  elib  elib
    5. Samoilenko A.M., Belan E.P., “Rotating Waves of the Phenomenological Equation of Spin Combustion”, Dokl. Math., 78:1 (2008), 612–616  crossref  mathscinet  isi
    6. A. Yu. Kolesov, N. Kh. Rozov, “The buffer property in a non-classical hyperbolic boundary-value problem from radiophysics”, Sb. Math., 197:6 (2006), 853–885  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. Samoilenko A.M., Belan E.P., “Dynamics of Traveling Waves in the Phenomenological Equation of Spin Combustion”, Dokl. Math., 73:1 (2006), 134–137  crossref  zmath  isi  elib
    8. A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Buffer Phenomenon in Nonlinear Physics”, Proc. Steklov Inst. Math., 250 (2005), 102–168  mathnet  mathscinet  zmath
    9. A. Yu. Kolesov, N. Kh. Rozov, “Optical Buffering and Mechanisms for Its Occurrence”, Theoret. and Math. Phys., 140:1 (2004), 905–917  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain”, Math. Notes, 75:5 (2004), 617–622  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    11. Kolesov A., Rozov N., “The Buffer Phenomenon in Combustion Theory”, Dokl. Math., 69:3 (2004), 469–472  mathscinet  isi
    12. A. Yu. Kolesov, N. Kh. Rozov, “The existence of countably many stable cycles for a generalized cubic Schrödinger equation in a planar domain”, Izv. Math., 67:6 (2003), 1213–1242  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. A. Yu. Kolesov, N. Kh. Rozov, “Two-Frequency Autowave Processes in the Complex Ginzburg–Landau Equation”, Theoret. and Math. Phys., 134:3 (2003), 308–325  mathnet  crossref  crossref  mathscinet  isi
    14. Kolesov A., Kulikov A., Rozov N., “Invariant Tori of a Class of Point Transformations: Preservation of an Invariant Torus Under Perturbations”, Differ. Equ., 39:6 (2003), 775–790  mathnet  crossref  mathscinet  zmath  isi
    15. A. Yu. Kolesov, N. Kh. Rozov, “Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation”, Sb. Math., 193:1 (2002), 93–118  mathnet  crossref  crossref  mathscinet  zmath  isi
    16. A. Yu. Kolesov, N. Kh. Rozov, “The Bufferness Phenomenon in the RCLG Seft-excited Oscillator: Theoretical Analysis and Experiment Results”, Proc. Steklov Inst. Math., 233 (2001), 143–196  mathnet  mathscinet  zmath
    17. A. Yu. Kolesov, N. Kh. Rozov, “The buffer phenomenon in a mathematical model of the van der Pol self-oscillator with distributed parameters”, Izv. Math., 65:3 (2001), 485–501  mathnet  crossref  crossref  mathscinet  zmath  elib
    18. Yu. S. Kolesov, “Justification of the method of quasinormal forms for Hutchinson's equation with a small diffusion coefficient”, Izv. Math., 65:4 (2001), 749–768  mathnet  crossref  crossref  mathscinet  zmath
    19. Kolesov A., Rozov N., “The Bufferness Phenomenon in Distributed Mechanical System”, Pmm-J. Appl. Math. Mech., 65:2 (2001), 179–193  crossref  mathscinet  zmath  isi
    20. A. Yu. Kolesov, N. Kh. Rozov, “Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain”, Theoret. and Math. Phys., 125:2 (2000), 1476–1488  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:405
    Russian version PDF:171
    English version PDF:33
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025