Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 78, Issue 1, Pages 253–266
DOI: https://doi.org/10.1070/SM1994v078n01ABEH003468
(Mi sm968)
 

This article is cited in 10 scientific papers (total in 10 papers)

The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type

K. G. Malyutin

Kharkiv State University
References:
Abstract: The problem of multiple interpolation is considered in the class $[\rho(r),\infty)^+$ of functions of at most normal type for the proximate order $\rho(r)$ in the upper half-plane $C^+\colon f^{(k-1)}(a_n)=b_{n,k}$, $k = 1,\dots,q_n$, $n=1,2,\dots$, where the divisor $D=\{a_n,\,q_n\}$ has limit points only on the real axis, and the numbers $\{b_{n,k}\}$ satisfy the condition
$$ \varlimsup_{n\to\infty}r_n^{-\rho(r_n)}\ln\sup_{1\leqslant k\leqslant q_n}\dfrac{(\Lambda_n)^{k-1}|b_{n,k}|}{(k-1)!}<\infty. $$

The following result is valid.
Theorem. {\it $D$ is an interpolation divisor in the class $[\rho(r),\infty)^+$ if and only if
$$ \varlimsup_{n\to\infty}r_n^{-\rho(r_n)}\ln\frac{q_n!}{|E^{(q_n)}(a_n)|(\Lambda _n)^k}<\infty, $$
where $E(z)$ is the canonical product of the set $D$}.
Necessary and sufficient conditions are also found in terms of the measure determined by the divisor $D$: $\mu(G)=\sum_{a_n\in G}q_n\sin(\arg a_n)$.
Received: 08.04.1991
Bibliographic databases:
UDC: 517.52
MSC: 30E05, 30D15
Language: English
Original paper language: Russian
Citation: K. G. Malyutin, “The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 253–266
Citation in format AMSBIB
\Bibitem{Mal93}
\by K.~G.~Malyutin
\paper The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 78
\issue 1
\pages 253--266
\mathnet{http://mi.mathnet.ru//eng/sm968}
\crossref{https://doi.org/10.1070/SM1994v078n01ABEH003468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1214948}
\zmath{https://zbmath.org/?q=an:0807.30026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994NR97600016}
Linking options:
  • https://www.mathnet.ru/eng/sm968
  • https://doi.org/10.1070/SM1994v078n01ABEH003468
  • https://www.mathnet.ru/eng/sm/v184/i2/p129
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:391
    Russian version PDF:114
    English version PDF:11
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024