Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 78, Issue 1, Pages 253–266
DOI: https://doi.org/10.1070/SM1994v078n01ABEH003468
(Mi sm968)
 

This article is cited in 11 scientific papers (total in 11 papers)

The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type

K. G. Malyutin

Kharkiv State University
References:
Abstract: The problem of multiple interpolation is considered in the class [ρ(r),)+ of functions of at most normal type for the proximate order ρ(r) in the upper half-plane C+:f(k1)(an)=bn,k, k=1,,qn, n=1,2,, where the divisor D={an,qn} has limit points only on the real axis, and the numbers {bn,k} satisfy the condition
¯limnrρ(rn)nlnsup1kqn(Λn)k1|bn,k|(k1)!<.

The following result is valid.
Theorem. {\it D is an interpolation divisor in the class [ρ(r),)+ if and only if
¯limnrρ(rn)nlnqn!|E(qn)(an)|(Λn)k<,
where E(z) is the canonical product of the set D}.
Necessary and sufficient conditions are also found in terms of the measure determined by the divisor D: μ(G)=anGqnsin(argan).
Received: 08.04.1991
Bibliographic databases:
UDC: 517.52
MSC: 30E05, 30D15
Language: English
Original paper language: Russian
Citation: K. G. Malyutin, “The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 253–266
Citation in format AMSBIB
\Bibitem{Mal93}
\by K.~G.~Malyutin
\paper The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 78
\issue 1
\pages 253--266
\mathnet{http://mi.mathnet.ru/eng/sm968}
\crossref{https://doi.org/10.1070/SM1994v078n01ABEH003468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1214948}
\zmath{https://zbmath.org/?q=an:0807.30026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994NR97600016}
Linking options:
  • https://www.mathnet.ru/eng/sm968
  • https://doi.org/10.1070/SM1994v078n01ABEH003468
  • https://www.mathnet.ru/eng/sm/v184/i2/p129
  • This publication is cited in the following 11 articles:
    1. M. V. Kabanko, K. G. Malyutin, “Interpolation sets in spaces of functions of finite order in half–plane”, Ufa Math. J., 16:3 (2024), 40–53  mathnet  crossref
    2. M. V. Kabanko, K. G. Malyutin, “Interpolirovanie metodom Erla v prostranstve funktsii poluformalnogo poryadka”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 597–609  mathnet  crossref
    3. K. G. Malyutin, A. A. Naumova, “Predstavlenie subgarmonicheskikh funktsii v polukoltse i v polukruge”, Chebyshevskii sb., 24:5 (2023), 136–152  mathnet  crossref
    4. Malyutin K. Kabanko M., “Multiple Interpolation By the Functions of Finite Order in the Half-Plane”, Lobachevskii J. Math., 41:11, SI (2020), 2211–2222  crossref  isi
    5. B. V. Vynnyt'skyi, V. L. Sharan, I. B. Sheparovych, “On an interpolation problem in the class of functions of exponential type in a half-plane”, Ufa Math. J., 11:1 (2019), 19–26  mathnet  crossref  isi
    6. K. G. Malyutin, A. L. Gusev, “Geometric meaning of the interpolation conditions in the class of functions of finite order in the half-plane”, Probl. anal. Issues Anal., 8(26):3 (2019), 96–104  mathnet  crossref  elib
    7. K. G. Malyutin, A. L. Gusev, “The interpolation problem in the spaces of analytical functions of finite order in the half-plane”, Probl. anal. Issues Anal., 7(25), spetsvypusk (2018), 113–123  mathnet  crossref  elib
    8. K. G. Malyutin, “Interpolation Problems of A. F. Leontiev Type”, J. Math. Sci. (N. Y.), 252:3 (2021), 399–419  mathnet  crossref  mathscinet
    9. O. A. Bozhenko, K. G. Malyutin, “Problem of multiple interpolation in class of analytical functions of zero order in half-plane”, Ufa Math. J., 6:1 (2014), 18–28  mathnet  crossref  elib
    10. K. G. Malyutin, “Sets of regular growth of functions in the half-plane. I”, Izv. Math., 59:4 (1995), 785–814  mathnet  crossref  mathscinet  zmath  isi
    11. K. G. Malyutin, “Sets of regular growth of functions in a half-plane. II”, Izv. Math., 59:5 (1995), 983–1006  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:424
    Russian version PDF:120
    English version PDF:17
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025