Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 12, Pages 1694–1729
DOI: https://doi.org/10.1070/SM9577
(Mi sm9577)
 

This article is cited in 9 scientific papers (total in 9 papers)

The polynomial Hermite-Padé $m$-system for meromorphic functions on a compact Riemann surface

A. V. Komlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Given a tuple of $m+1$ germs of arbitrary analytic functions at a fixed point, we introduce the polynomial Hermite-Padé $m$-system, which includes the Hermite-Padé polynomials of types I and II. In the generic case we find the weak asymptotics of the polynomials of the Hermite-Padé $m$-system constructed from the tuple of germs of functions $1, f_1,\dots,f_m$ that are meromorphic on an $(m+1)$-sheeted compact Riemann surface $\mathfrak R$. We show that if $f_j = f^j$ for some meromorphic function $f$ on $\mathfrak R$, then with the help of the ratios of polynomials of the Hermite-Padé $m$-system we recover the values of $f$ on all sheets of the Nuttall partition of $\mathfrak R$, apart from the last sheet.
Bibliography: 18 titles.
Keywords: rational approximation, Hermite-Padé polynomials, weak asymptotics, Riemann surface.
Funding agency Grant number
Russian Science Foundation 19-11-00316
This work was supported by the Russian Science Foundation under grant no. 19-11-00316.
Received: 16.03.2021 and 15.07.2021
Russian version:
Matematicheskii Sbornik, 2021, Volume 212, Number 12, Pages 40–76
DOI: https://doi.org/10.4213/sm9577
Bibliographic databases:
Document Type: Article
UDC: 517.538.5
MSC: Primary 41A10, 41A21; Secondary 30E10, 30F99
Language: English
Original paper language: Russian
Citation: A. V. Komlov, “The polynomial Hermite-Padé $m$-system for meromorphic functions on a compact Riemann surface”, Mat. Sb., 212:12 (2021), 40–76; Sb. Math., 212:12 (2021), 1694–1729
Citation in format AMSBIB
\Bibitem{Kom21}
\by A.~V.~Komlov
\paper The polynomial Hermite-Pad\'e $m$-system for meromorphic functions on a~compact Riemann surface
\jour Mat. Sb.
\yr 2021
\vol 212
\issue 12
\pages 40--76
\mathnet{http://mi.mathnet.ru/sm9577}
\crossref{https://doi.org/10.4213/sm9577}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4344414}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1694K}
\transl
\jour Sb. Math.
\yr 2021
\vol 212
\issue 12
\pages 1694--1729
\crossref{https://doi.org/10.1070/SM9577}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760503900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129059707}
Linking options:
  • https://www.mathnet.ru/eng/sm9577
  • https://doi.org/10.1070/SM9577
  • https://www.mathnet.ru/eng/sm/v212/i12/p40
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:373
    Russian version PDF:56
    English version PDF:28
    Russian version HTML:159
    References:45
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024