Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 78, Issue 1, Pages 47–76
DOI: https://doi.org/10.1070/SM1994v078n01ABEH003458
(Mi sm956)
 

This article is cited in 16 scientific papers (total in 16 papers)

Partly dissipative semigroups generated by the Navier–Stokes system on two-dimensional manifolds, and their attractors

A. A. Ilyin

Hydrometeorological Centre of USSR
References:
Abstract: The Navier–Stokes equations
$$ \partial_tu+\nabla_uu=-\nabla p+\nu\Delta u+f, \qquad \operatorname{div}u=0, $$
are considered on a two-dimensional compact manifold $M$; the phase space is not assumed to be orthogonal to the finite-dimensional space $\mathscr{H}$ of harmonic vector fields on $M$, $\mathscr H=\{u\in C^\infty(TM),\,\Delta u=0\}$, $ n=\dim\mathscr H$ is the first Betti number. It is proved that the Hausdorff (and fractal) dimensions of a global attractor $\mathscr A$ of this system satisfy $\dim_H\mathscr A\leqslant c_1G'^{2/3}(1+\ln G')^{1/3}+n+1$ $(\dim_F\mathscr A\leqslant c_2G'^{2/3}(1+\ln G')^{1/3}+2n+2)$, where $G'$ is a number analogous to the Grashof number. In the most important particular case $M=S^2$ (the unit sphere) the explicit values of the constants in the corresponding integral inequalities on the sphere are given, leading to the estimates, $\dim_H\mathscr A_{S^2}\leqslant 5.6G^{2/3}(4.3+\frac43\ln G)^{1/3}+1$, $\dim_F\mathscr A_{S^2}\leqslant 15.8G^{2/3}(4.3+\frac43\ln G)^{1/3}+2$. Analogous estimates are proved for the two-dimensional Navier–Stokes equations in a bounded domain with a boundary condition that ensures the absence of a boundary layer.
Received: 21.06.1991
Bibliographic databases:
UDC: 517.9
MSC: Primary 35Q30, 76D05, 47D03; Secondary 86A10
Language: English
Original paper language: Russian
Citation: A. A. Ilyin, “Partly dissipative semigroups generated by the Navier–Stokes system on two-dimensional manifolds, and their attractors”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 47–76
Citation in format AMSBIB
\Bibitem{Ily93}
\by A.~A.~Ilyin
\paper Partly dissipative semigroups generated by the Navier--Stokes system on two-dimensional manifolds, and their attractors
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 78
\issue 1
\pages 47--76
\mathnet{http://mi.mathnet.ru//eng/sm956}
\crossref{https://doi.org/10.1070/SM1994v078n01ABEH003458}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1211366}
\zmath{https://zbmath.org/?q=an:0813.35080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994NR97600004}
Linking options:
  • https://www.mathnet.ru/eng/sm956
  • https://doi.org/10.1070/SM1994v078n01ABEH003458
  • https://www.mathnet.ru/eng/sm/v184/i1/p55
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024