Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 10, Pages 1471–1490
DOI: https://doi.org/10.1070/SM9477
(Mi sm9477)
 

This article is cited in 1 scientific paper (total in 1 paper)

Slide polynomials and subword complexes

E. Yu. Smirnovab, A. A. Tutubalinaa

a National Research University Higher School of Economics, Moscow, Russia
b Independent University of Moscow, Moscow, Russia
References:
Abstract: Subword complexes were defined by Knutson and Miller in 2004 to describe Gröbner degenerations of matrix Schubert varieties. Subword complexes of a certain type are called pipe dream complexes. The facets of such a complex are indexed by pipe dreams, or, equivalently, by monomials in the corresponding Schubert polynomial. In 2017 Assaf and Searles defined a basis of slide polynomials, generalizing Stanley symmetric functions, and described a combinatorial rule for expanding Schubert polynomials in this basis. We describe a decomposition of subword complexes into strata called slide complexes. The slide complexes appearing in such a way are shown to be homeomorphic to balls or spheres. For pipe dream complexes, such strata correspond to slide polynomials.
Bibliography: 14 titles.
Keywords: flag varieties, Schubert polynomials, Grothendieck polynomials, simplicial complexes.
Funding agency Grant number
HSE Basic Research Program
Foundation for the Development of Theoretical Physics and Mathematics BASIS
Russian Foundation for Basic Research 20-01-00091-а
Simons Foundation Simons–IUM Fellowship
The research of E. Yu. Smirnov was carried out with the support of the HSE University Basic Research Program, the Theoretical Physics and Mathematics Advancement Foundation “BASIS” (a ‘Junior Leader’ grant), the Russian Foundation for Basic Research (grant no. 20-01-00091-a), and the Simons Foundation (a Simons–IUM Fellowship). The research of A. A. Tutubalina was carried out with the support of the HSE University Basic Research Program and the Theoretical Physics and Mathematics Advancement Foundation “BASIS” (a ‘Junior Leader’ grant).
Received: 09.07.2020 and 08.04.2021
Russian version:
Matematicheskii Sbornik, 2021, Volume 212, Number 10, Pages 131–151
DOI: https://doi.org/10.4213/sm9477
Bibliographic databases:
Document Type: Article
UDC: 512.714
MSC: Primary 14N15, 20F55; Secondary 55U10
Language: English
Original paper language: Russian
Citation: E. Yu. Smirnov, A. A. Tutubalina, “Slide polynomials and subword complexes”, Mat. Sb., 212:10 (2021), 131–151; Sb. Math., 212:10 (2021), 1471–1490
Citation in format AMSBIB
\Bibitem{SmiTut21}
\by E.~Yu.~Smirnov, A.~A.~Tutubalina
\paper Slide polynomials and subword complexes
\jour Mat. Sb.
\yr 2021
\vol 212
\issue 10
\pages 131--151
\mathnet{http://mi.mathnet.ru/sm9477}
\crossref{https://doi.org/10.4213/sm9477}
\transl
\jour Sb. Math.
\yr 2021
\vol 212
\issue 10
\pages 1471--1490
\crossref{https://doi.org/10.1070/SM9477}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000729983200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123544739}
Linking options:
  • https://www.mathnet.ru/eng/sm9477
  • https://doi.org/10.1070/SM9477
  • https://www.mathnet.ru/eng/sm/v212/i10/p131
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:338
    Russian version PDF:46
    English version PDF:35
    Russian version HTML:133
    References:42
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024