Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 3, Pages 433–448
DOI: https://doi.org/10.1070/SM9442
(Mi sm9442)
 

On a conjecture of Teissier: the case of log canonical thresholds

E. Elduque, M. Mustaţă

Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
References:
Abstract: For a smooth germ of an algebraic variety $(X,0)$ and a hypersurface $(f=0)$ in $X$, with an isolated singularity at $0$, Teissier conjectured a lower bound for the Arnold exponent of $f$ in terms of the Arnold exponent of a hyperplane section $f|_H$ and the invariant $\theta_0(f)$ of the hypersurface.
By building on an approach due to Loeser, we prove the conjecture in the case of log canonical thresholds.
Bibliography: 21 titles.
Keywords: Arnold exponent, multiplier ideals, log canonical thresholds.
Funding agency Grant number
National Science Foundation DMS-1701622
The research of M. Mustaţă was partially supported by the National Science Foundation (grant DMS-1701622).
Received: 08.05.2020 and 16.12.2020
Russian version:
Matematicheskii Sbornik, 2021, Volume 212, Number 3, Pages 175–192
DOI: https://doi.org/10.4213/sm9442
Bibliographic databases:
Document Type: Article
UDC: 512.761
MSC: 14B05, 14F18, 32S25
Language: English
Original paper language: Russian
Citation: E. Elduque, M. Mustaţă, “On a conjecture of Teissier: the case of log canonical thresholds”, Mat. Sb., 212:3 (2021), 175–192; Sb. Math., 212:3 (2021), 433–448
Citation in format AMSBIB
\Bibitem{EldMus21}
\by E.~Elduque, M.~Musta{\c t}{\u a}
\paper On a~conjecture of Teissier: the case of~log canonical thresholds
\jour Mat. Sb.
\yr 2021
\vol 212
\issue 3
\pages 175--192
\mathnet{http://mi.mathnet.ru/sm9442}
\crossref{https://doi.org/10.4213/sm9442}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223977}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212..433E}
\transl
\jour Sb. Math.
\yr 2021
\vol 212
\issue 3
\pages 433--448
\crossref{https://doi.org/10.1070/SM9442}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701534100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106663386}
Linking options:
  • https://www.mathnet.ru/eng/sm9442
  • https://doi.org/10.1070/SM9442
  • https://www.mathnet.ru/eng/sm/v212/i3/p175
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:277
    Russian version PDF:31
    English version PDF:24
    Russian version HTML:77
    References:43
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024