Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 12, Pages 1795–1800
DOI: https://doi.org/10.1070/SM9350
(Mi sm9350)
 

This article is cited in 1 scientific paper (total in 1 paper)

Proof of a conjecture of Wiegold for nilpotent Lie algebras

A. A. Skutin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Let $\mathfrak{g}$ be a nilpotent Lie algebra. By the breadth $b(x)$ of an element $x$ of $\mathfrak{g}$ we mean the number $[\mathfrak{g}:C_{\mathfrak{g}}(x)]$. Vaughan-Lee showed that if the breadth of all elements of the Lie algebra $\mathfrak{g}$ is bounded by a number $n$, then the dimension of the commutator subalgebra of the Lie algebra does not exceed $n(n+1)/2$. We show that if $\dim \mathfrak{g'} > n(n+1)/2$ for some nonnegative $n$, then the Lie algebra $\mathfrak{g}$ is generated by the elements of breadth $>n$, and thus we prove a conjecture due to Wiegold (Question 4.69 in the Kourovka Notebook) in the case of nilpotent Lie algebras.
Bibliography: 4 titles.
Keywords: nilpotent Lie algebras, finite $p$-groups, breadth of an element, estimate for the size of the commutator subalgebra.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00591-а
This work was supported by the Russian Foundation for Basic Research (grant no. 19-01-00591-a).
Received: 14.11.2019 and 29.09.2020
Bibliographic databases:
Document Type: Article
UDC: 512.554.32
MSC: Primary 17B20; Secondary 17B50
Language: English
Original paper language: Russian
Citation: A. A. Skutin, “Proof of a conjecture of Wiegold for nilpotent Lie algebras”, Sb. Math., 211:12 (2020), 1795–1800
Citation in format AMSBIB
\Bibitem{Sku20}
\by A.~A.~Skutin
\paper Proof of a~conjecture of Wiegold for nilpotent Lie algebras
\jour Sb. Math.
\yr 2020
\vol 211
\issue 12
\pages 1795--1800
\mathnet{http://mi.mathnet.ru//eng/sm9350}
\crossref{https://doi.org/10.1070/SM9350}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181079}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1795S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000617464900001}
\elib{https://elibrary.ru/item.asp?id=46744353}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101153262}
Linking options:
  • https://www.mathnet.ru/eng/sm9350
  • https://doi.org/10.1070/SM9350
  • https://www.mathnet.ru/eng/sm/v211/i12/p143
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:275
    Russian version PDF:32
    English version PDF:30
    References:52
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024