Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 9, Pages 1310–1322
DOI: https://doi.org/10.1070/SM9335
(Mi sm9335)
 

This article is cited in 8 scientific papers (total in 8 papers)

Bounded automorphism groups of compact complex surfaces

Yu. G. Prokhorov, C. A. Shramov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kähler manifold of nonnegative Kodaira dimension, always has bounded finite subgroups.
Bibliography: 23 titles.
Keywords: elliptic surface, automorphism group.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1614
This work was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2019-1614).
Received: 02.10.2019 and 02.03.2020
Bibliographic databases:
Document Type: Article
UDC: 512.76
MSC: 14J50
Language: English
Original paper language: Russian
Citation: Yu. G. Prokhorov, C. A. Shramov, “Bounded automorphism groups of compact complex surfaces”, Sb. Math., 211:9 (2020), 1310–1322
Citation in format AMSBIB
\Bibitem{ProShr20}
\by Yu.~G.~Prokhorov, C.~A.~Shramov
\paper Bounded automorphism groups of compact complex surfaces
\jour Sb. Math.
\yr 2020
\vol 211
\issue 9
\pages 1310--1322
\mathnet{http://mi.mathnet.ru//eng/sm9335}
\crossref{https://doi.org/10.1070/SM9335}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153732}
\zmath{https://zbmath.org/?q=an:1455.14083}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1310P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000593506700001}
\elib{https://elibrary.ru/item.asp?id=45099692}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097195510}
Linking options:
  • https://www.mathnet.ru/eng/sm9335
  • https://doi.org/10.1070/SM9335
  • https://www.mathnet.ru/eng/sm/v211/i9/p105
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024