Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 7, Pages 987–1013
DOI: https://doi.org/10.1070/SM9296
(Mi sm9296)
 

This article is cited in 12 scientific papers (total in 12 papers)

An elliptic billiard in a potential force field: classification of motions, topological analysis

I. F. Kobtsev

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
References:
Abstract: Given an ellipse ${\frac{x^2}{a}+\frac{y^2}{b}=1}$, $a>b>0$, we consider an absolutely elastic billiard in it with potential $\frac{k}{2}(x^2+y^2)+\frac{\alpha}{2x^2}+\frac{\beta}{2y^2}$, $a\geqslant0$, $\beta\geqslant0$. This dynamical system is integrable and has two degrees of freedom. We obtain the iso-energy invariants of rough and fine Liouville equivalence, and conduct a comparative analysis of other systems known in rigid body mechanics. To obtain the results we apply the method of separation of variables and construct a new method, which is equivalent to the bifurcation diagram but does not require it to be constructed.
Bibliography: 17 titles.
Keywords: integrable Hamiltonian system, billiard in an ellipse, potential, Liouville foliation, bifurcations.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6399.2018.1
This research was conducted in the framework of the Programme of the President of the Russian Federation for State Support of Leading Scientific Schools (grant no. НШ-6399.2018.1).
Received: 28.06.2019
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37J35; Secondary 37G10, 70H06, 70E40
Language: English
Original paper language: Russian
Citation: I. F. Kobtsev, “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211:7 (2020), 987–1013
Citation in format AMSBIB
\Bibitem{Kob20}
\by I.~F.~Kobtsev
\paper An elliptic billiard in a~potential force field: classification of motions, topological analysis
\jour Sb. Math.
\yr 2020
\vol 211
\issue 7
\pages 987--1013
\mathnet{http://mi.mathnet.ru//eng/sm9296}
\crossref{https://doi.org/10.1070/SM9296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133436}
\zmath{https://zbmath.org/?q=an:1448.37066}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..987K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000573484500001}
\elib{https://elibrary.ru/item.asp?id=45280154}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092096416}
Linking options:
  • https://www.mathnet.ru/eng/sm9296
  • https://doi.org/10.1070/SM9296
  • https://www.mathnet.ru/eng/sm/v211/i7/p93
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:377
    Russian version PDF:67
    English version PDF:34
    References:42
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024