|
This article is cited in 8 scientific papers (total in 8 papers)
Orders of moduli of continuity of operators of almost best approximation
P. V. Al'brecht
Abstract:
Let $X$ be a normed linear space, $Y\subset X$ a finite-dimensional subspace,
$\varepsilon>0$. A multiplicative $\varepsilon$-selection $M\colon K\to Y$, where $K\subset X$, is a single-valued mapping such that
$$
\forall\,x\in K\qquad \|Mx-x\|\leqslant\inf\{\|x-y\|:y\in Y\}\cdot(1+\varepsilon).
$$
It is proved in the paper that when $X=L^p(T,\Sigma,\mu)$, $1<p<\infty$, for any
$Y\subset X$ and $\varepsilon>0$ there exists an $\varepsilon$-selection $M\colon K\to Y$ such that
$$
\forall\,x_1,x_2\in K\qquad \|Mx_1-Mx_2\|\leqslant c(n,p)(1+\varepsilon^{-|1/2-1/p|})\|x_1-x_2\|,
$$
where the estimate is order-sharp in the space $L^p[0,1]$. It is also established that the Lipschitz constant for the $\varepsilon$-selection is of proximate order
$1/\varepsilon$ in the spaces $L^1[0,1]$ and $C[0,1]$.
Received: 02.10.1992 and 21.12.1993
Citation:
P. V. Al'brecht, “Orders of moduli of continuity of operators of almost best approximation”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 1–22
Linking options:
https://www.mathnet.ru/eng/sm923https://doi.org/10.1070/SM1995v083n01ABEH003578 https://www.mathnet.ru/eng/sm/v185/i9/p3
|
|