Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 11, Pages 1563–1580
DOI: https://doi.org/10.1070/SM9225
(Mi sm9225)
 

This article is cited in 7 scientific papers (total in 7 papers)

Schur's criterion for formal power series

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: A criterion for when a formal power series can be represented by a formal Schur continued fraction is stated. The proof proposed is based on a relationship, revealed here, between Hankel two-point determinants of a series and its Schur determinants.
Bibliography: 10 titles.
Keywords: continued fractions, Schur functions, Hankel determinants.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00764-а
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 18-01-00764-a).
Received: 28.01.2019 and 17.06.2019
Russian version:
Matematicheskii Sbornik, 2019, Volume 210, Number 11, Pages 58–75
DOI: https://doi.org/10.4213/sm9225
Bibliographic databases:
Document Type: Article
UDC: 517.538.22
MSC: 30B10, 30B70
Language: English
Original paper language: Russian
Citation: V. I. Buslaev, “Schur's criterion for formal power series”, Mat. Sb., 210:11 (2019), 58–75; Sb. Math., 210:11 (2019), 1563–1580
Citation in format AMSBIB
\Bibitem{Bus19}
\by V.~I.~Buslaev
\paper Schur's criterion for formal power series
\jour Mat. Sb.
\yr 2019
\vol 210
\issue 11
\pages 58--75
\mathnet{http://mi.mathnet.ru/sm9225}
\crossref{https://doi.org/10.4213/sm9225}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4036801}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210.1563B}
\elib{https://elibrary.ru/item.asp?id=43275920}
\transl
\jour Sb. Math.
\yr 2019
\vol 210
\issue 11
\pages 1563--1580
\crossref{https://doi.org/10.1070/SM9225}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000508558900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082480709}
Linking options:
  • https://www.mathnet.ru/eng/sm9225
  • https://doi.org/10.1070/SM9225
  • https://www.mathnet.ru/eng/sm/v210/i11/p58
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:417
    Russian version PDF:51
    English version PDF:12
    References:32
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024