Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 2, Pages 226–257
DOI: https://doi.org/10.1070/SM9216
(Mi sm9216)
 

This article is cited in 3 scientific papers (total in 3 papers)

Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold

V. F. Vil'danova

Bashkir State Pedagogical University n. a. M. Akmulla, Ufa, Russia
References:
Abstract: A class of integro-differential aggregation equations with nonlinear parabolic term $b(x,u)_t$ is considered on a compact Riemannian manifold $\mathscr M$. The divergence term in the equations can degenerate with loss of coercivity and may contain nonlinearities of variable order. The impermeability boundary condition on the boundary $\partial\mathscr M\times[0,T]$ of the cylinder $Q^T=\mathscr M\times[0,T]$ is satisfied if there are no external sources of ‘mass’ conservation, $\int_\mathscr Mb(x,u(x,t))\,d\nu=\mathrm{const}$. In a cylinder $Q^T$ for a sufficiently small $T$, the mixed problem for the aggregation equation is shown to have a bounded solution. The existence of a bounded solution of the problem in the cylinder $Q^\infty=\mathscr M\times[0,\infty)$ is proved under additional conditions.
For equations of the form $b(x,u)_t=\Delta A(x,u)-\operatorname{div}(b(x,u)\mathscr G(u))+f(x,u)$ with the Laplace-Beltrami operator $\Delta$ and an integral operator $\mathscr G(u)$, the mixed problem is shown to have a unique bounded solution.
Bibliography: 26 titles.
Keywords: aggregation equation on a manifold, existence of a solution, uniqueness of a solution.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00428-a
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 18-01-00428-a).
Received: 10.01.2019 and 18.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.968.74+517.954
MSC: 35D40, 34C40
Language: English
Original paper language: Russian
Citation: V. F. Vil'danova, “Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold”, Sb. Math., 211:2 (2020), 226–257
Citation in format AMSBIB
\Bibitem{Vil20}
\by V.~F.~Vil'danova
\paper Existence and uniqueness of a~weak solution of an integro-differential aggregation equation on a~Riemannian manifold
\jour Sb. Math.
\yr 2020
\vol 211
\issue 2
\pages 226--257
\mathnet{http://mi.mathnet.ru//eng/sm9216}
\crossref{https://doi.org/10.1070/SM9216}
\zmath{https://zbmath.org/?q=an:1440.35338}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..226V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529470500001}
\elib{https://elibrary.ru/item.asp?id=43298494}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085358779}
Linking options:
  • https://www.mathnet.ru/eng/sm9216
  • https://doi.org/10.1070/SM9216
  • https://www.mathnet.ru/eng/sm/v211/i2/p74
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:457
    Russian version PDF:39
    English version PDF:26
    References:58
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024